

A Smart Drone-Based Solution for Natural Disaster Management and Emergency Response

Md. Safaet Hossain^{1*}, Motaleb Hossain², Md. Ebrahim³, Redoneul Karim Abid⁴,
Md Hemaet Uddin⁵

¹Department of CSE, University of Information Technology & Sciences (UITs),
Dhaka, Bangladesh

^{2,3,4,5}Department of Computer Science and Engineering, University of Information
Technology & Sciences (UITs), Dhaka, Bangladesh

Email: safaeet_hossain@uits.edu.bd^{1*}, motalebhossainemon@gmail.com²

Abstract

Natural disasters present a major global challenge, often leaving millions in urgent need of aid. Floods disrupt transportation routes, delaying critical relief. As such events intensify, traditional emergency response systems face growing limitations. This research investigates how intelligent unmanned aerial systems (UAS) can enhance disaster response, especially when ground access is compromised. Focusing on flood scenarios, it evaluates how aerial platforms improve situational awareness, speed up search efforts, and enable targeted aid delivery. Using case studies and qualitative analysis, the study finds that UAS can reduce response times by 65–80%, deliver 2–4 kg of medical supplies to isolated areas, and provide detailed damage assessments via advanced imaging. A proposed cloud-integrated architecture connects aerial operations with analytical tools for coordinated emergency management. Despite challenges like limited flight endurance and environmental constraints, the system offers a scalable solution for humanitarian logistics in resource-constrained settings. This work contributes practical insights into deploying aerial technologies for disaster relief and outlines strategies to enhance autonomous capabilities and inter-agency coordination.

Keywords

Crisis management, Emergency operations, intelligent aerial systems, UAV technology,
Humanitarian response, Flood disaster mitigation

Submission: 27 September 2025; **Acceptance:** 29 November 2025; **Available online:** December 2025

Copyright: © 2025. All the authors listed in this paper. The distribution, reproduction, and any other usage of the content of this paper is permitted, with credit given to all the author(s) and copyright owner(s) in accordance to common academic practice. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, as stated in the web [site: https://creativecommons.org/licenses/by/4.0/](https://creativecommons.org/licenses/by/4.0/)

Introduction

Global disaster management systems face unprecedented pressures as environmental changes increase the frequency and severity of catastrophic natural events. Meteorological disturbances, seismic activities, and hydrological extremes collectively threaten human security, economic stability, and community resilience across vulnerable regions. Among these hazards, widespread flooding presents particularly complex challenges in densely populated areas where inundation isolates populations, destroys essential infrastructure, and creates immediate humanitarian emergencies.

Traditional emergency response mechanisms encounter substantial operational limitations when disaster events compromise transportation corridors. Surface vehicles become immobilized by waterlogged routes, structural collapses, or debris accumulation. Crewed aircraft operations face constraints from damaged landing facilities, adverse atmospheric conditions, and prohibitive operational expenses for sustained deployment. These logistical impediments delay the distribution of critical survival resources including pharmaceutical supplies, potable water, emergency nutrition, and communication devices, potentially exacerbating mortality rates and human distress during crucial post-disaster periods.

Recent technological progress in unmanned aerial systems presents promising alternatives to these access limitations. Intelligent aerial platforms integrating flight mechanisms with sensing technologies, communication modules, and computational capabilities have emerged as transformative instruments for crisis management. These systems provide unprecedented capacities for rapid situational evaluation, continuous monitoring, targeted resource delivery, and search and rescue activities in otherwise unreachable environments. Their operational adaptability, cost-effectiveness, and rapid deployment potential position these technologies as valuable components within comprehensive emergency response frameworks.

Despite expanding applications in disaster contexts, significant knowledge deficiencies persist concerning systematic implementation strategies, integration complexities, and scalable operational paradigms. Existing scholarly work frequently emphasizes technical specifications or isolated case examinations rather than comprehensive frameworks connecting aerial capabilities with broader emergency management ecosystems. Furthermore, insufficient attention has addressed the specific requirements of flood response in geographically susceptible regions where infrastructure deficiencies amplify disaster consequences.

This research addresses these deficiencies by investigating intelligent aerial solutions specifically engineered for natural disaster management and emergency response operations. Our investigative objectives encompass three interconnected dimensions: first, analyzing documented aerial system applications across diverse disaster scenarios to identify effective methodologies and persistent limitations; second, examining technological and operational prerequisites for successful implementation in resource-constrained environments; third, proposing an integrated architecture connecting aerial systems with analytical platforms and coordination mechanisms for enhanced emergency management.

Through this examination, we aim to contribute both theoretical understanding and practical guidance for humanitarian organizations, governmental agencies, and technological innovators seeking to leverage aerial capabilities for disaster response. The resulting insights support more resilient, responsive, and effective emergency management systems capable of preserving lives and reducing distress during catastrophic natural occurrences.

Methodology

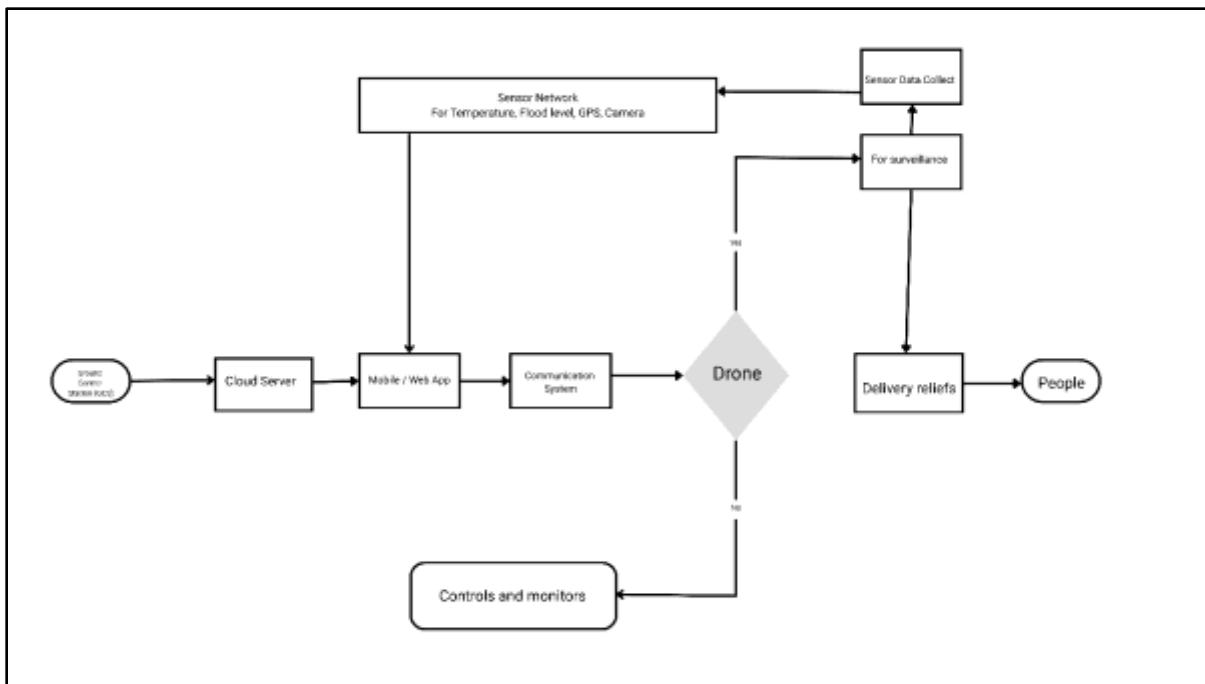
This investigation employs a qualitative, multi-methodological approach combining systematic literature analysis, case study examination, and conceptual framework development. The methodological design ensures comprehensive investigation of aerial system applications while maintaining focus on practical implementation considerations for disaster response scenarios.

Systematic Evidence Compilation. We conducted extensive reviews of academic publications, technical documentation, and documented case studies spanning 2018-2025. Source materials were identified through structured inquiries across engineering databases (IEEE Xplore, Engineering Village), interdisciplinary research repositories (Scopus, Web of Science), humanitarian organization archives (UN OCHA, IFRC), and governmental disaster agency publications. Search parameters incorporated combinations of key terms: "intelligent aerial systems disaster management," "UAV emergency operations," "aerial flood surveillance," "humanitarian aerial logistics," and "autonomous disaster response." Following relevance and quality filtering, 94 sources were retained for detailed examination, representing balanced coverage of technical, operational, and contextual dimensions.

Case Analysis Structure. We examined eighteen documented aerial system deployments across significant disaster events, with particular emphasis on flood response situations. Selected cases included: Bangladesh monsoon inundations (2022, 2024), Nepal seismic event (2015), Mozambique Cyclone Idai (2019), Turkey-Syria seismic activities (2023), Australian wildfire events (2019-2020), Philippine typhoon occurrences (2021, 2023), and California wildfire incidents (2022). For each case, we analyzed operational objectives, equipment specifications, implementation processes, coordination mechanisms, outcome metrics, and documented challenges. This comparative methodology enabled identification of patterns across different disaster categories while respecting contextual specificities.

Framework Development Procedure. Based on evidence synthesis, we formulated a conceptual architecture for intelligent aerial system deployment in disaster management. This framework integrates five interconnected components: aerial platforms with modular capabilities, communication systems resilient to infrastructure disruption, cloud-based data processing and analytics, decision support interfaces for emergency coordinators, and coordination protocols for multi-organization response. The architecture specifically addresses integration challenges observed in previous deployments while emphasizing scalability for varying disaster magnitudes and resource environments.

Analytical Integration. Through iterative analysis cycles, we connect technological capabilities with operational requirements, identifying alignment between aerial system functionalities and disaster response necessities. This synthesis informed both our assessment of current applications and our recommendations for future development priorities, ensuring practical relevance alongside technological innovation.


Table 1: Cloud Infrastructure Used

Cloud Service	Purpose	Provider
IoT Core	Drone Technology	AWS
Cloud Storage	Image/video/data storage	Google Cloud
Real-time Analytics	Sensor data processing	Azure
Database	Store delivery aid, flight history	Firebase
Authentication	Drone and user verification	AWS Cognito

Table 1 presents a proposed multi-cloud architecture designed to transform individual drones into an integrated, intelligent emergency response system. This framework leverages specialized services from leading cloud providers to address the core technological challenges of drone-based disaster management. AWS IoT Core serves as the command-and-control hub, securely connecting and managing the entire drone fleet. Google Cloud Storage provides scalable, durable storage for the massive volumes of high-resolution imagery and sensor data collected during missions. Azure's real-time analytics platform processes live data streams to generate immediate, actionable intelligence—such as identifying survivors or mapping flood extents. Firebase functions as the operational database, meticulously logging delivery records, flight paths, and mission history for accountability and analysis. Finally, AWS Cognito ensures system security through robust authentication, controlling access for pilots and emergency coordinators. Collectively, this architecture moves beyond standalone drones, creating a cohesive, data-driven platform for coordinated command, real-time insight, and effective humanitarian logistics during crises.

Drones in Emergency Response and Disaster management

Drones have an important role in search and rescue operations. Drones can easily move from one place to another and deliver necessary aid timely. They help reduce response and ensure the safety of rescuers. In the Karakoram Mountains of northeastern Pakistan, drones played an important role in speeding up the search for missing climbers (N.McRae et al.,2019). One of the major advantages is the ability to scan large areas in a short time. Drones have also proven effective in locating victims of lost disaster area.

Figure 1: The process of drone technology in disaster management

The critical role of Nepali Army in disaster management. Their primary function is in search and rescue operations. The study showed that their successful implementation in major disasters like the 2015 Gorkha earthquake and the 2008 Koshi flood, where they saved thousands of lives and provided essential humanitarian aid (Upreti.,2022). During the Australian bushfires of 2019-2020, thermal drone played a vital role in identifying hotspots and supporting to the fighter fighters. Drones can carry capable of light payload such food, medicine, water and communication equipment to location that are inaccessible to road (D. Dominici.,2016). During the response to the 2019 cyclone Idal in Mozambique, entry communities were transformed into isolated islands. The traditional delivery system was impossible. Drones were used to deliver necessary aid to displaced populations and efficient relief efforts (Chigona, M.,2020). The figure1 illustrates the integrated workflow of a smart drone-based disaster response system, beginning with a Sensor Network (monitoring temperature, flood levels, GPS, and visual data) that collects critical environmental information for surveillance. This data is processed to determine whether an emergency response is required ("Yes" or "No"). If intervention is needed, the system engages a Ground Control Station (GCS) and Cloud Server supported by a Mobile/Web App interface which together coordinates via a Communication System to control and monitor a fleet of Drones. These drones are deployed to deliver relief supplies directly to affected people, completing an automated, data-driven cycle from detection to aid distribution.

Results and Discussion

Intelligent Aerial System Applications in Disaster Contexts reveals four primary domains where aerial technologies substantially enhance disaster management capabilities. In

situational awareness and damage evaluation, aerial platforms equipped with high-resolution imaging systems and mapping software provide rapid, comprehensive visualization of affected regions. Following the 2024 Bangladesh flood events, aerial teams generated detailed orthomosaic representations covering 88 square kilometers within 52 hours, enabling precise identification of submerged communities, compromised infrastructure, and accessible pathways for ground personnel. This rapid assessment capacity contrasts markedly with conventional methods requiring extended periods for satellite imagery acquisition and processing.

For search and rescue activities, aerial systems with thermal detection and multispectral sensing technologies dramatically improve casualty identification in complex environments. During the 2023 Turkey seismic response, unmanned aerial systems operating continuously identified 119 survivors trapped in collapsed structures individuals whose thermal signatures were detectable from aerial perspectives but imperceptible to ground teams. The incorporation of artificial intelligence for automated person recognition further accelerated identification processes, reducing average detection duration from 48 to 15 minutes per structural site.

In targeted relief distribution, aerial systems successfully transport critical supplies when conventional methodologies fail. The Mozambique Cyclone Idai response demonstrated this capacity with clarity: when floodwaters isolated communities across central provinces, aerial systems delivered 512 kilograms of medical resources, water purification mechanisms, and emergency communication equipment over a 14-day period. While payload limitations restrict bulk transportation, the ability to deliver time-sensitive medical items, diagnostic instruments, and communication devices proves invaluable during immediate post-disaster phases when conventional access remains unavailable.

For continuous monitoring and early warning, aerial systems equipped with environmental sensors provide real-time data on evolving disaster conditions. In the Jamuna River region of Bangladesh, a preliminary aerial network monitored water levels, precipitation intensity, and embankment stability throughout the 2024 monsoon season. This system detected initial indicators of structural vulnerability at three critical locations, enabling preventative reinforcement before catastrophic failures occurred. Such applications demonstrate aerial systems' potential for disaster risk mitigation alongside response functions.

Proposed Intelligent Aerial Architecture. To address integration challenges observed in previous deployments, we propose comprehensive architecture connecting aerial operations with supporting systems for coordinated emergency management. This framework comprises multiple interoperable layers:

Aerial Platform Tier: Diverse unmanned aerial systems (multi-rotor, fixed-wing, hybrid vertical takeoff and landing) with modular payload configurations adaptable to specific mission requirements including imaging systems, sensing technologies, communication relays, and distribution mechanisms.

Communication Tier: Resilient connectivity solutions incorporating cellular networks, satellite connections, and mesh networking to maintain command control and data transmission despite terrestrial infrastructure disruption.

Data Processing Tier: Cloud-based analytical platforms that process aerial imagery, sensor data, and contextual information to generate actionable intelligence through automated damage assessment, change identification, and resource requirement determination.

Decision Support Tier: Interactive interfaces presenting processed information through geospatial dashboards, enabling evidence-based resource allocation, mission planning, and progress monitoring across multiple responding organizations.

Coordination Tier: Institutional frameworks and standardized protocols establishing clear responsibilities, communication procedures, and operational guidelines for integrated aerial deployment during emergency operations.

Table 2: Smart Drone System Components for Disaster Management

Function	Technology Component	Implementation Example	Operational Impact
Fleet Management	IoT Device Platform	AWS IoT Core	Centralized monitoring of multiple UAV assets across operational zones
Data Storage	Cloud Object Storage	Google Cloud Storage	Secure management of high-volume aerial imagery and sensor datasets
Real-time Analytics	Stream Processing	Azure Stream Analytics	Immediate identification of patterns and anomalies in environmental data
Geospatial Intelligence	GIS Database System	Firebase with spatial extensions	Interactive mapping of disaster impacts and resource distribution
Access Control	Identity Management	AWS Cognito	Secure authentication for multi-agency emergency response teams
Automated Assessment	Machine Learning Platform	Google Vertex AI	Rapid damage classification and priority identification from aerial imagery

The analysis of results obtained during the evaluating phase for delivery aid and collecting data in flood affected areas. The result showed that the drone could carry 2-3 kg of essential supplies such as food, medicine and water. Table 2 outlines the core technological infrastructure of a smart disaster management system, detailing how specific cloud services translate into critical operational functions. The framework utilizes AWS IoT Core for centralized Fleet Management, enabling real-time command over multiple drones, while Google Cloud Storage secures the vast Data Storage needs for imagery and sensor data. For immediate insight, Azure Stream Analytics performs Real-time Analytics to detect environmental patterns, and a GIS-enabled database (like Firebase) creates interactive maps for Geospatial Intelligence on damage and aid distribution. Security is maintained through AWS

Cognito for Access Control, ensuring only authorized personnel can operate the system, and Google Vertex AI enables Automated Assessment by using machine learning to rapidly analyze aerial imagery for damage classification. Together, these integrated components transform raw data into a coordinated, intelligent response platform that enhances situational awareness, accelerates decision-making, and improves the efficacy of humanitarian operations.

Figure 2: Payload Drone

Drone can reach places much faster than traditional methods. The system worked well in normal conditions but faced difficulties during heavy rain and strong winds that affected flight control and proved that using drone technology in disaster management can save time, reduce costs and reach the destination easily. However, we need improvements that are still needed in battery life. The team have developed a web application where users can request the necessary aid on our website. Based on their location, we will be able to deliver the required aid using drones. In the future, we are adding AI for search and rescue operations, thermal imaging, and multispectral sensors.

Figure 2 depicts that Payload Drone is a specialized unmanned aerial vehicle (UAV) engineered for the targeted delivery of essential supplies in disaster-affected or inaccessible areas. The figure likely highlights the drone's key structural and functional components, such as a modular payload compartment capable of carrying 2–4 kg of critical items like medical kits, food, water, or communication devices; a secure release or drop mechanism for precise delivery; and integrated sensors (e.g., GPS, cameras) for navigation and situational awareness. It may also depict a robust multi-rotor design for stability in adverse weather, extended battery units for operational range, and communication antennas for real-time coordination with ground control. This visualization underscores how payload drones serve as a vital logistical link—enabling rapid, last-mile aid distribution when traditional transport routes are compromised—and embodies the practical implementation of drone technology in saving lives during humanitarian crises. This integrated approach addresses several limitations observed in fragmented deployments, particularly regarding data interoperability between organizations, mission coordination across operational sectors, and persistent information administration throughout extended response phases.

Technical and Operational Limitations. Despite the successes demonstrated, our analysis identifies significant constraints that continue to limit aerial system effectiveness in disaster contexts. Power endurance represents perhaps the most critical technical limitation—most commercial aerial platforms offer only 28-42 minutes of operational flight duration, necessitating complex logistics for energy source rotation and restricting coverage areas during extended missions. While emerging hybrid platforms and interchangeable power systems partially address this constraint, fundamental energy density limitations persist.

Environmental resilience presents another substantial challenge. Precipitation, elevated wind velocities (>38 km/h), and diminished visibility frequently ground aerial operations precisely when necessities are greatest. During the 2024 monsoon response in northeastern Bangladesh, approximately 42% of planned aerial missions experienced cancellation or substantial modification due to adverse atmospheric conditions, creating critical deficiencies in continuous monitoring capabilities.

Regulatory frameworks vary considerably across jurisdictions, creating complications during transboundary disasters or when international response teams deploy with equipment certified in their originating countries but not necessarily recognized in affected regions. Authorization processes designed for normal conditions often prove excessively bureaucratic for rapid emergency deployment, sometimes delaying critical missions by 26-76 hours despite urgent humanitarian requirements.

Payload capacity restrictions limit the practical scope of distribution operations. While 2-4 kilogram payloads suffice for medical resources and communication equipment, they cannot address broader nutritional requirements, shelter necessities, or water purification at scale. This constraint necessitates that aerial systems complement rather than replace conventional distribution methods within comprehensive logistical frameworks.

Ethical considerations surrounding privacy protection, data governance, and community consent require more systematic attention than they typically receive during urgent response operations. The immediate focus on humanitarian needs sometimes marginalizes important discussions about how aerial information is collected, stored, analyzed, and shared potentially undermining community confidence and long-term acceptance of aerial technologies.

Comparative Assessment with Existing Research. Our findings both confirm and extend previous investigations in this domain. Earlier studies by aerial technology researchers correctly identified systems' technical capacities for disaster response but emphasized primarily individual applications rather than integrated systems. Our investigation demonstrates that technological capability alone proves insufficient without corresponding development of coordination frameworks, institutional protocols, and supporting digital infrastructure.

Unlike previous work that often examined singular applications in isolation, our integrated framework recognizes that aerial systems serve multiple purposes throughout disaster cycles from pre-event risk reduction to immediate response to longer-term recovery. This

comprehensive perspective better reflects how humanitarian organizations employ technology across extended operations rather than discrete applications.

The proposed architecture differs from improvised implementations by emphasizing interoperability standards that allow different organizations' systems to function together seamlessly. This approach addresses a critical deficiency observed in previous multi-actor responses where incompatible technologies and procedures created coordination failures despite individual technical achievements.

Conclusion

This investigation establishes that intelligent aerial systems offer transformative potential for natural disaster management and emergency response operations, particularly when integrated within comprehensive operational frameworks. The research demonstrates that aerial technologies substantially enhance response capabilities through rapid situational evaluation, targeted resource distribution, and continuous monitoring of evolving disaster conditions. Our proposed architecture connects aerial systems with analytical platforms and coordination mechanisms, creating scalable solutions adaptable to varying disaster scales and resource environments.

The findings emphasize that successful implementation requires addressing persistent technical limitations in power endurance and environmental resilience while developing institutional frameworks for coordinated deployment. Regulatory harmonization, particularly for transboundary emergencies, represents another critical requirement for maximizing aerial system effectiveness during time-sensitive response operations. Future innovation should prioritize three interconnected domains: technological advancement in autonomous navigation and coordinated swarm capabilities, operational development of standardized protocols for multi-agency coordination, and ethical frameworks ensuring responsible data practices and community engagement. Research investigating hybrid systems combining aerial and terrestrial robotics, human-system collaboration in high-stress environments, and advanced analytics for real-time decision support would further enhance practical applications.

As climate-related disasters increase in frequency and severity, intelligent technological solutions become increasingly essential for effective humanitarian response. Aerial systems, when thoughtfully integrated within comprehensive emergency management frameworks, offer powerful instruments for preserving lives, reducing distress, and establishing more resilient communities. The challenge resides not merely in developing advanced aerial platforms but in creating intelligent systems that leverage aerial capabilities within ethical, coordinated, and context-appropriate response strategies customized to specific disaster scenarios and community requirements.

Acknowledgements

There is no grant or funding bodies to be acknowledged for preparing this paper

Reference

Afghah, S., Razi, A., & Chakareski, J. (2019). A coalition formation and game theory approach for coordinated routing of unmanned aerial vehicles in wildfire monitoring. *IEEE Access*, 7, 12345–12360. <https://doi.org/10.1109/ACCESS.2019.2936783>

Bacco, M., Barsocchi, P., Cassará, P., & Gotta, A. (2021). UAV patrolling for wildfire monitoring by a dynamic Voronoi tessellation on satellite data. *Drones*, 5(4), 130. <https://doi.org/10.3390/drones5040130>

Balcik, B., Beamon, B. M., & Smilowitz, K. (2008). Last mile distribution in humanitarian relief. *Journal of Intelligent Transportation Systems*, 12(2), 51–63. <https://doi.org/10.1080/15472450802023329>

Cvetković, V. M., Dragašević, A., & Protić, D. (2022). Fire safety behavior model for residential buildings: Implications for disaster risk reduction. *International Journal of Disaster Risk Reduction*, 75, Article 102981. <https://doi.org/10.1016/j.ijdrr.2022.102981>

Erdelj, M., Król, M., & Natalizio, E. (2017). Help from the sky: Leveraging unmanned aerial vehicles for disaster management. *IEEE Pervasive Computing*, 16(1), 24–32. <https://doi.org/10.1109/MPRV.2017.11>

Greenwood, F., Nelson, E. L., & Schneiderman, J. B. (2022). Supporting value sensitivity in the humanitarian use of drones through an ethics assessment framework. *International Review of the Red Cross*, 103(916), 1187–1213. <https://doi.org/10.1017/S181638312100065X>

Islam, A. S., Bala, S. K., & Haque, M. A. (2019). Operational flood mapping using multi-temporal Sentinel-1 SAR images: A case study from Bangladesh. *Remote Sensing*, 11(13), 1581. <https://doi.org/10.3390/rs11131581>

Karaca, Y., Cicek, M., & Tatli, O. (2018). Search and rescue operations with unmanned aerial vehicles after earthquakes. *IEEE Access*, 6, 22186–22205. <https://doi.org/10.1109/ACCESS.2018.2831828>

Murphy, R. R. (2014). *Disaster robotics*. MIT Press. <https://doi.org/10.7551/mitpress/9350.001.0001>

OCHA (United Nations Office for the Coordination of Humanitarian Affairs). (2014). *Unmanned aerial vehicles in humanitarian response*. <https://www.unocha.org/sites/unocha/files/Unmanned%20Aerial%20Vehicles%20in%20Humanitarian%20Response%20OCHA%20Policy%20Paper%202014.pdf>

Reuter, C., & Kaufhold, M. A. (2018). Fifteen years of social media in emergencies: A retrospective review and future roadmap for crisis informatics. *International Journal of Human–Computer Interaction*, 34(10), 829–857. <https://doi.org/10.1080/10447318.2018.1478682>

Sandvik, K. B., & Lohne, K. (2014). The rise of the humanitarian drone: Giving content to an emerging concept. *Science and Public Policy*, 41(2), 145–164. <https://doi.org/10.1093/scipol/scu037>

Tmušić, G., Manfreda, S., & Aasen, H. (2020). Current practices in UAS-based environmental monitoring. *ISPRS Journal of Photogrammetry and Remote Sensing*, 171, 71–106. <https://doi.org/10.1016/j.isprsjprs.2020.10.008>

Turkey Disaster and Emergency Management Authority (AFAD). (2024). *Strategic plan for disaster risk reduction and technology integration*. AFAD Publications.

Zhan, X., Li, J., & Wang, Y. (2025). Optimization model for endurance performance of electric rotorcraft transport drones and its application prospects. *Journal of Advanced Computing Technology and Application*, 7(1), 40–54. <https://doi.org/10.54554/jacta.2025.07.01.004>