# A Framework for Formulation of Student Dataset Using Existing and Novel Features for Analysis

Esther Samuel Alu<sup>1\*</sup>, Rashida Funke Olanrewaju<sup>1</sup>, Afolyan A. Obiniyi<sup>2,</sup> Muhammad Dahiru Liman<sup>3</sup>

<sup>1,2</sup>Department of Computer Science, Nasarawa State University Keffi, Nigeria
<sup>3</sup>Department of Computer Science, Ahmadu Bello University Zaria, Nigeria
<sup>3</sup>Department of Computer Science, Federal University of Lafia, Nigeria

\*Email: estheralu@nsuk.edu.ng, frashidah@nsuk.edu.ng, aaobiniyi@gmail.com, mlimand76@gmail.com

## Abstract

One major problem identified with most schools in Nigeria is that they lack structured educational datasets that is composed of several attributes related to each student, such as term-based grades, courses taken, student-specific details, and absences which could be easily analysed. This paper formulates a dataset with some novel features for analysing and predicting student performance. Apart from the current features like age, grade, number of failures etc. some novel features which consists of environmental factors were proposed. Students' records were collected from schools and surveys on schools' infrastructure were collected using a questionnaire. The data were analysed using NumPy and Pandas in python. Random forest was used as classifier for making prediction and detecting important features. The following features were found to influence the model decision in making decision; Average, Number of failures, students score in all the subjects, school type, portable drinking water, availability of electricity, textbook to student ratio, and availability of laboratory reagents. Four of the proposed features were among the most important features. In addition, the model was excellent in making prediction. Results of the analysis shows that there are more male than females in the dataset, this means that government, non-governmental organization and the society needs to promote and encourage girl child education.

# Keywords

Student, Dataset, Feature Importance, Random Forest.

# Introduction

Education is the bedrock of any society, it provides a foundation for development; therefore, this foundation must be properly built so that it can provide the desired development. The decline in performance of students in public schools raises concern considering Government spending over the last three decades in the sector (Omotor, 2004 & Onuma, 2016). This has left most government

Submission: 2 June 2023; Acceptance: 7 August 2023



schools deserted as most parents have taken their children out of public schools to private schools (Dixon *et al.*, 2017 & Ukpor *et al.*, 2012). Stakeholders have found themselves in the undesirable position of not being able to identify the cause of the decline in students' performance. According to West Africa Examination Council (WAEC) statistics, fewer students are registering for public schools. Private schools have a larger enrollment of students than public schools. Private schools saw a 56% increase in enrollment while public schools saw a 44% fall (Uduu, 2022). According to WAEC, private school performance increased from 54% in 2016 to 71% in 2019 among students with more than five credits. The increase in student enrollment in private schools may be responsible for this improvement.

This work focuses on the senior secondary school level of education in Nigeria, and how poor student record keeping and maintenance has hurt the quality of secondary education in Nigeria. It is this gap that this research aim to fill by formulating a dataset with relevant student features that will be used by policy makers to make decisions. It will also help school administrators to identify students who had the highest probability of failing at the end of the year. Features that influence the model decision can be the focal point of policy makers, and school administrators in tackling student failure.

## **Materials and Methods**

## Materials

The proposed dataset consists of existing and novel features.

# Existing features from Literatures

The existing features used in previous related works are presented in table 1.

| Table 1. Features used in previous work for | predicting student performance |
|---------------------------------------------|--------------------------------|
|---------------------------------------------|--------------------------------|

| Features                                                 | Paper                                   |
|----------------------------------------------------------|-----------------------------------------|
| GPA and Grades                                           | (Huang <i>et al.</i> , 2011)            |
| Grades                                                   | (Livieris et al., 2012; Li et al, 2013; |
|                                                          | Arsad et al., 2013; Meier et al, 2015;  |
|                                                          | Arsad et al., 2014; Buniyamin et al,    |
|                                                          | 2016).                                  |
| Grades, Backgrounds                                      | Xu et al, 2017                          |
| Class Performance, Attendance, Assignment, Lab           | Guleria et al, 2014                     |
| Work, Sessional Performance                              |                                         |
| Aptitude, Personality, Motivation Learning strategies    | Gray et al, 2014                        |
| student demographics, general performance, students'     | Alharbi et al, 2016                     |
| modules                                                  |                                         |
| Internal grades, sessional grades and admission score    | Hamsa et al, 2016                       |
| Personal and demographics information, student           | Sarker et al, 2014                      |
| satisfaction and integration                             |                                         |
| Personal data, pre-university data, and university data. | Dorina 2012                             |

| Gender, marital status, admission category, family    | Aggarwal et al. (2019)         |
|-------------------------------------------------------|--------------------------------|
| income and size, parents' qualification and           |                                |
| occupation, number of friends, study hours, types of  |                                |
| school attended. and travel time to college and home  |                                |
| Department satisfaction, course attendance, preferred | Kayri (2015)                   |
| study time, planning, and friends' contributions.     |                                |
| Gender, family background, distance, GPA, entrance    | Osmanbegovic and Suljic (2012) |
| exam, scholarships, time, materials, internet.        |                                |

## Existing features used in this research

The features of the proposed dataset have two components namely; features from current/existing features and the novel/new features.

The features from existing literature used in this work are; scores of different subjects (performance of student in relevant subject like Mathematics, English, Physics, Chemistry, Biology, Agriculture, Financial Accounting, Literature, Commerce, Civic Education, Economics, and Geography), Number of times student has failed, course type, school name, gender, number of terms, student average scores, and grade.

Apart from the current features some novel/new features were proposed. These features are school infrastructures and/or school facilities namely; teacher to student ratio, availability of laboratory reagent, availability of laboratory equipment, availability of textbooks in the library, textbook to student ratio, availability of visual equipment, number of students per seat, the type of board used in school, availability of electricity, and availability of portable drinking water.

#### Method of Data Collection

The method of data collection used is the primary and secondary methods. The primary method is the questionnaire given to schools to obtain data about the school's facilities and infrastructures. The secondary method is the students' academic records obtained from the various schools.

#### Population, and Sample

Nasarawa state has 13 local government areas with 297 public or government schools and 298 private schools.

# Method

Part of the contribution of this paper is to derive insights from the proposed dataset. To derive insights there is need to clean the data. One of the insights is to know the features that are important. To determine the features that are important there is a need for a model to be developed that will detect these important features.

#### Data Cleaning

This stage involves cleaning of the dataset, converting categorical data to numerical variables and normalizing the data. Categorical variables were converted to numerical variables, this is because the model expects numbers. The type of encoding use is one hot encoding. The AVG column is

derive by getting the average scores of the nine subjects. The N\_fail is derived by counting the number of subjects a student has failed.

#### Algorithm

Random forest classifier was used to detect features that were important. The following steps were followed to create and train the model. Load dataset, data preparation, visualize data, Model creation, train model, test model, and evaluate model. The steps are shown in figure 1.

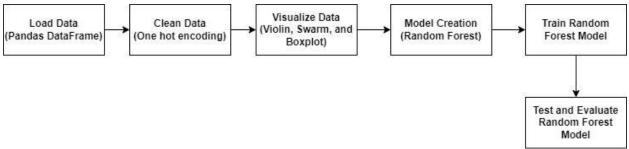



Figure 1. Model flow diagram.

The dataset was loaded into Pandas dataframe for easy analysis. The data was prepared by cleaning the data as previously explained in the data cleaning stage. The data was visualized to know the distribution of the classes as shown in figure 2. The models were created using Scikit-learn. The model created is Random Forest Classifier. The model was trained using training data. The training data is 72% of the whole data. 8% of the data was used for validation. The model was tested using test data. The test data was 20% of the whole data. The model was evaluated using accuracy, precision, recall, and confusion matrix.

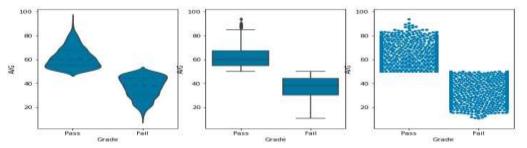



Figure 2. Violin plot, Boxplot, and swarm plot showing the distribution of the two classes.

# **Results and Discussion**

The formulated dataset and the insights derive from the dataset are presented here.

# Formulation of Student Dataset

The formulated dataset consists of 28 features from current literatures and proposed novel features. The students' dataset has a total of 3543 records from both private and public schools. The dataset had two categories (Fail and Pass). Figure 3 shows a sample of the formulated dataset.

| NAMES                     | School_Name                                                                                                  | MTH                                                                                                                                                                                  | ENG                                                                                                                                                                                                                                                                                                                                                                      | 810                                                                                                                                                                                                                                                                                                                                                                                                       | GED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AGRIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ECO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CIVIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PHY_GOVT_COMM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Laboratory_equipments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 02. CHUE<br>DESMOND       | Anty Dele<br>College                                                                                         | 41.666667                                                                                                                                                                            | 55 000000                                                                                                                                                                                                                                                                                                                                                                | 45 056057                                                                                                                                                                                                                                                                                                                                                                                                 | 74.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64.655557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37 333333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Glaed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 83. JOSEPH<br>SUNDAY      | Anty Dele<br>College                                                                                         | 35,066667                                                                                                                                                                            | 42.000000                                                                                                                                                                                                                                                                                                                                                                | 32,000000                                                                                                                                                                                                                                                                                                                                                                                                 | 68.666667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44.655567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 58 566667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42.669567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 04.<br>FRANCIS<br>EPHRAIM | Anty Dele<br>College                                                                                         | 74,333333                                                                                                                                                                            | 74.666667                                                                                                                                                                                                                                                                                                                                                                | 79.000000                                                                                                                                                                                                                                                                                                                                                                                                 | 91.656667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83 655657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 88.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 05. ISHAYA<br>EMMANUEL    | Anty Dele<br>College                                                                                         | 40.000000                                                                                                                                                                            | 67.000000                                                                                                                                                                                                                                                                                                                                                                | 55.000000                                                                                                                                                                                                                                                                                                                                                                                                 | 73 333333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 69.866657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 71.666667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 66 AKOR<br>ENMANUEL       | Anty Dele<br>College                                                                                         | 58.333333                                                                                                                                                                            | 73.000000                                                                                                                                                                                                                                                                                                                                                                | 58.000000                                                                                                                                                                                                                                                                                                                                                                                                 | 81.656667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 74.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69.333333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69.505657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 71.333333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           | 02. CHUE<br>DESMOND<br>03. JOSEPH<br>SUNDAY<br>04<br>FRANCIS<br>EPHRAM<br>05. ISHAYA<br>EMMANUEL<br>06. AKOR | 02 CHUE Arty Dele<br>DESMOND College<br>03. JURDAY Arty Dele<br>SUNDAY Arty Dele<br>FIRANCIS College<br>04. Arty Dele<br>EPHRAIM College<br>05. ISHAVA Arty Dele<br>EMMANUEL College | 02. CHUE     Anty Date     Atty Date     Atty Date     Atty Bate     Att 666667       03. JOSEPH<br>SUNDAY     Anty Date     25 060607     Atty Date     26 060607       04.     College     26 060607     College     26 060607       FIRANCES     Arty Date     College     40 00000       EPHRAM     College     40 000000       05. AKOR     Arty Date     59 333333 | 02. CHUE<br>DESMOND     Anty Dele<br>College     a1 666667     56 00000       03. JOSEPH<br>SUNDAY     Anty Dele<br>College     35 066667     42 00000       04.<br>PHANCIS<br>EPHEAM     Anty Dele<br>College     74 333333     74 866667       05. ISHAVA<br>EMMANUEL<br>College     Anty Dele<br>College     40 000000     67 00000       05. AKDR<br>Anty Dele<br>College     96 333333     73 000000 | NAMES     School_Name     MTH     ENG     BIO       02_CHUE     Antr Dele<br>DESMOND     Antr Dele<br>College     41.66667     56.00000     46.66667     90.0000     46.66667     90.0000     32.00000     32.00000     32.00000     32.00000     92.00000     92.00000     92.00000     92.00000     92.00000     92.00000     92.00000     90.00000     93.00000     93.00000     93.00000     93.00000     93.00000     93.00000     95.00000     95.00000     95.00000     95.00000     95.00000     95.00000     95.00000     95.000000     95.00000     95.00000     95.00000     95.00000     95.00000     95.00000     95.00000     95.00000     95.00000     95.00000     95.00000     95.00000     95.00000     95.00000     95.00000     95.00000     95.00000     95.000000     95.000000     95.000000     95.000000     95.000000     95.000000     95.000000     95.000000     95.000000     95.000000     95.000000     95.000000     95.000000     95.000000     95.000000     95.000000     95.000000     95.0000000     95.0000000     95.000 | NAMES     School_Name     MTH     ENG     BIO     GEO       02_CHUE     Antr Dale<br>Collega     a1.869667     54.00000     46.866657     74.010000       03_JOSEPH<br>SUNDAD     Antr Dale<br>Collega     35.966667     42.00000     32.900100     68.866667       04.<br>FRANCIS<br>EPHRAMIS     Antr Dale<br>Collega     74.33333     74.866867     79.00000     91.858657       05.ISHAVA<br>ENMANUEL     Antr Dale<br>Collega     40.00000     67.00000     55.00000     73.33333       95.AKOR<br>ENMANUEL     Antr Dale<br>Collega     59.33333     74.00000     58.00000     81.666667 | NAMES     School_Name     MTH     ENG     BIO     GEO     AGRC       02_CHUE     Antr Dele<br>DESMOND     Antr Dele<br>SUNDAP     41.666667     56.00000     46.666667     74.00000     67.00000       03_JOSEPH<br>SUNDAP     Antr Dele<br>College     35.666667     42.00000     32.00000     68.666667     59.00000       04<br>FIRANCIS<br>EPHRANCI<br>SUNDAP     Antr Dele<br>College     74.333333     74.666667     79.00000     91.656667     83.665667       05.ISHAVA<br>EMMANUEL     Antr Dele<br>College     49.00000     67.00000     55.050000     73.33333     69.656667       95.AXCR     Antr Dele<br>S4.33333     73.00000     58.00000     81.656667     74.00000 | NAMES     School_Name     MTH     ENG     BIO     GEO     AGRIC     ECO       02_CHUE     Antri Dele<br>Collega     a1.869867     56.900000     46.868687     74.030000     67.00000     64.66687       03_JOSEPH<br>SUNDAD     Antri Dele<br>Collega     35.666667     42.00000     32.00000     88.86667     59.00000     44.66687       04.<br>FRANCIS<br>EPHRAMI     Antri Dele<br>Collega     74.33333     74.86667     79.00000     91.656867     83.86667     81.00000       05.ISHAVA<br>EMMANUEL     Antri Dele<br>Collega     40.00000     67.00000     55.00000     73.33333     60.86667     73.00000       95.AXCR     Antri Dele<br>S6.33333     73.000000     55.00000     81.969667     74.000000     69.333333 | NAMES     School_Name     MTH     ENG     BIO     GEO     AGRIC     ECO     CNNC       02_CHUE     Actr Dele<br>College     41.666667     56.00000     46.666667     74.00000     67.00000     64.666687     60.00000       03_JOSEPH<br>SUNDAY     Actr Dele<br>College     35.666667     42.00000     32.00000     68.866667     59.00000     44.666687     56.66667       PRAMES     Actr Dele<br>College     74.33333     74.866667     79.00000     91.656867     83.866657     81.00000     74.00000       05.154AVA<br>EMMANUEL     Actr Dele<br>College     40.00000     67.00000     55.00000     73.33333     69.866657     73.00000     71.666667       05.154AVA     Actr Dele<br>College     40.00000     67.000000     55.00000     73.33333     69.866657     73.00000     71.666667 | NAMES     School_Name     MTH     ENG     BIO     GED     AGRO     ECO     CNC     PHY_GOVT_COMM       02     CHUE     Anty Date     41.66667     56.00000     46.66667     74.03000     67.00000     64.666667     60.00000     37.33333       03. JOSEPH<br>SUNDAD     Anty Date<br>College     35.66667     42.00000     32.00000     68.66667     59.00000     44.666067     56.66667     42.666667       04.<br>FRANCIS<br>EPHRAMUEL     Anty Date<br>College     74.33333     74.66667     79.00000     61.656667     83.656667     81.00000     74.00000     68.60000       05.ISHWA<br>EMMANUEL     Anty Date<br>College     40.00000     67.00000     55.00000     73.33333     69.86667     73.00000     71.66667     59.00000       05.ISHWA<br>EMMANUEL     Anty Date<br>College     40.00000     67.00000     53.00000     73.33333     69.86667     73.00000     71.66667     59.00000 | NAMES     School, Name     MTH     ENG     BIO     GED     AGBC     ECO     CIN/C     PHY_GOVT_COMM        02. CHUE     Anto Dele<br>DESMOND     Anto Dele<br>Collega     81.666667     56.00000     46.666667     74.00000     64.666667     66.000000     37.131333        03. JOSEPH<br>SUNDARD     Anto Dele<br>Collega     35.006667     42.000000     32.00000     68.66667     59.00000     44.666667     56.666667     42.669667        04.<br>FRANCHS<br>EPHKANUEL     Anto Dele<br>Collega     74.33333     74.866667     79.00000     91.658667     81.00000     74.00000     74.00000     68.00000     88.66667     73.00000     74.00000     68.00000     88.66667     73.00000     74.000000     68.00000     88.66667     73.00000     74.000000     68.00000     88.66667     73.00000     74.600000     88.000000     88.66667     73.000000     74.600000     68.000000     88.66667     73.000000     74.600000     69.000000     69.000000     74.000000     74.600000     69.000000     74.000000     69.66667     73.000000 |

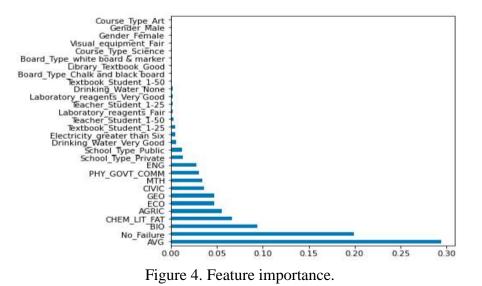
5 rows × 28 columns

Figure 3. Sample of the formulated student dataset.

#### Discussion

The essence of creating this dataset is to make it public for researchers to carry out research and derive insights from the dataset. Some of the insights derived from the dataset are discussed in succession.

#### **Insights 1: Is the dataset balance?**


This dataset was not balanced, because it has 3543 students, with 2016 that Failed and 1527 Passed.

#### **Insights 2: What is the gender count?**

The gender count was determined by distributing the classes on a pie chart with result as follows; 1792 males and 1751 females, which means males are more in the dataset. This result shows that there is need for government to encourage girl child education for gender equality.

#### **Insights 3: Are the proposed features important?**

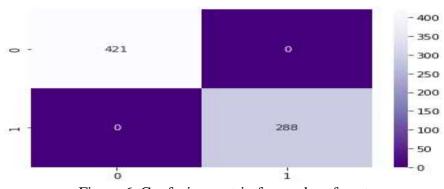
Features importance shows if the proposed novel features are important, whether they can be useful for making decision. Figure 2 shows a plot of the importance of each feature.



Machine learning developers used feature importance to select features that will help their model in making decision. From the figure 4, the features that are important are ranked

accordingly; starting with Average, number of failures, scores of all the subjects, school type, drinking water, electricity, textbook to student ratio, and laboratory reagent. Based on figure 4, the following proposed features were proven to be important namely; availability of drinking water, availability of electricity, textbook to student ratio, and laboratory reagent.

## **Models Evaluation**


The results of the model performance are presented in figures 5 and 6 based on the metrics. The random forest classifier achieved an accuracy of 1.0.

| Random forest Classification Report |           |        |          |         |  |  |  |
|-------------------------------------|-----------|--------|----------|---------|--|--|--|
|                                     | precision | recall | f1-score | support |  |  |  |
|                                     |           |        |          |         |  |  |  |
| 0                                   | 1.00      | 1.00   | 1.00     | 421     |  |  |  |
| 1                                   | 1.00      | 1.00   | 1.00     | 288     |  |  |  |
|                                     |           |        |          |         |  |  |  |
| accuracy                            |           |        | 1.00     | 709     |  |  |  |
| macro avg                           | 1.00      | 1.00   | 1.00     | 709     |  |  |  |
| weighted avg                        | 1.00      | 1.00   | 1.00     | 709     |  |  |  |
|                                     |           |        |          |         |  |  |  |

Figure 5. Classification report for Random Forest.

```
Random Forest Confusion Matrix
```





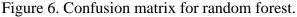



Figure 6 shows there were 421 True positives, 0 False Negatives, 0 False Positives, and 288 True Negatives. The major focus is the False Negatives, because it means the model predicted these instances that Failed as passed, which would have been very unfortunate because the students will miss the necessary intervention intended for them.

#### Conclusion

The results shows that the novel features proposed were really important and these features were not considered by the previous authors. From the preceding literature review, it is clear that fundamental data attributes which have significant impact on the performance of students were not considered by the authors. This is understandably so because the studies were conducted in different climes where each has its own peculiarities.

In other climes, electricity is available for 24 hours, there is portal drinking water, laboratories are well equipped, there are no congestion in classes, there are textbook in libraries for students to study, and there are enough teachers to meet the required number of teachers to student ratio.

In Nigeria, there is problem of electricity, some places are not even connected to the national grid, most places don't have portal drinking water, laboratories are not well equipped due to underfunding of education sector, the textbooks in the libraries are not enough and some are outdated, some schools don't have enough teachers, and due to lack of enough schools in some places the classes are congested. These are the reasons why these attributes were considered. Important features presented by the model can be used by stakeholders to make informed decisions. The model used here is a classification model, the problem can also be addressed using a regression model.

#### References

- Aggarwal, D., Mittal, S., & Bali, V. (2019). Prediction Model for Classifying Students Based on Performance using Machine Learning Techniques. International Journal of Recent Technology and Engineering, 8(257), 496–503. https://doi.org/10.35940/ijrte.B1093.0782S719
- Alharbi Z., Cornford J., Dolder L., & De La Iglesia B. (2016). Using data mining techniques to predict students at risk of poor performance, Proc. 2016 SAI Comput. Conf. SAI 2016, pp. 523–531.
- Arsad P. M., Buniyamin N., & Manan J. L. A., (2013). A neural network students' performance prediction model (NNSPPM), 2013 IEEE Int. Conf. Smart Instrumentation, Meas. Appl. ICSIMA 2013, pp. 26–27.
- Buniyamin N, Bin Mat U., & Arshad P. M., (2016). Educational data mining for prediction and classification of engineering students achievement, 2015 IEEE 7th Int. Conf. Eng. Educ. ICEED 2015, pp. 49–53.
- Dorina, K. (2012). Student Performance Prediction by Using Data Mining Classification Algorithms. International Journal of Computer Science and Management Research. Vol 1(4).
- Dixon, P., Humble, S & Tooley, J. (2017). How School Choice Is Framed By Parental Preferences And Family Characteristics: A Study In Poor Areas Of Lagos State, Nigeria. Institute of Economic Affairs: 53–65.
- Gray, G. McGuinness, C. & Owende, P. (2014). An application of classification models to predict learner progression in tertiary education, in Souvenir of the 2014 IEEE International Advance Computing Conference, IACC.
- Guleria, P., Thakur, N. & Sood, M. (2015). Predicting student performance using decision tree classifiers and information gain, Proc. 2014 3rd Int. Conf. Parallel, Distrib. Grid Comput. PDGC 2014, pp. 126–129.
- Hamsa, H., Indiradevi, S. & Kizhakkethottam, J. J. (2016). Student Academic Performance Prediction Model Using Decision Tree and Fuzzy Genetic Algorithm, Procedia Technol.

- Huang S., & Fang N., (2012). Work in progress: Early prediction of students' academic performance in an introductory engineering course through different mathematical modeling techniques, Proc. Front. Educ. Conf. FIE, vol. 1, pp. 3–4.
- Kayri, M. (2015). An Intelligent Approach to Educational Data: Performance Comparison of the Multilayer Perceptron and the Radial Basis Function Artificial Neural Network. Educational Sciences: Theory & Practice, 15(5), 1247–1255. https://doi.org/10.12738/estp.2015.5.0238
- Li. K. F., Rusk. D., & Song F. (2013). Predicting student academic performance, Proc. 2013 7th Int. Conf. Complex, Intelligent, Softw. Intensive Syst. CISIS 2013, pp. 27–33.
- Livieris, I. E., Drakopoulou, K. & Pintelas. P. (2012) Predicting students' performance using artificial neural networks," Proc. 8th Pan-Hellenic Conf. Information Commun. Technol. Educ., pp. 28–30.
- Livieris, I., Drakopoulou, K., Tampakas, V., Mikropoulos, T., Pintelas, P. (2019). Predicting secondary school students. Perform. Util. Semi-Supervised Learn. Approach J. Educ. Comput. Res. 57, 448–470.
- Meier Y., Xu J., Atan O., and Van Der Schaar M., (2016). Predicting grades, IEEE Trans. Signal Process., vol. 64, no. 4, pp. 959–972.
- Mohd Arsad P., Buniyamin N., & Ab Manan J. L. (2014). Neural Network and Linear Regression methods for prediction of students' academic achievement, IEEE Glob. Eng. Educ. Conf. EDUCON, no. April, pp. 916–921.
- Omotor, D. G. (2004). An Analysis of Federal Government Expenditure in the Education Sector of Nigeria: Implications for National Development. Journal of Social Sciences 9(2): 105–10.
- Onuma, N. (2016). Financial Allocation to Secondary Education in Nigeria: Implication for Students Performance. IOSR Journal of Research & Method in Education 6(3): 42–47.
- Sarker, F., Tiropanis, T. & Davis, H. C. (2014). Linked data, data mining and external open data for better prediction of at-risk students, in Proceedings. International Conference on Control, Decision and Information Technologies, CoDIT.
- Uduu, O. (2022) Public schools record a 73.81% success rate in 2021 WAEC, highest in 6 years, Dataphyte. Available at: https://www.dataphyte.com/latestreports/educationdevelopment/public-schools-record-a-73-81-success-rate-in-2021-waechighest-in-6-years/ (Accessed: April 4, 2023).
- Ukpor, C. O., Ubi, I. O. & Okon, A. E. (2012). Assessment Of Factors Determining Parents' Preference For Private Secondary Schools In Rural Communities Of Cross River State. Global Journal Of Educational Research 11(2): 99–106.
- Xu. J., Moon. K. H., & Van Der Schaar. M., (2017). A Machine Learning Approach for Tracking and Predicting Student Performance in Degree Programs, IEEE J. Sel. Top. Signal Process., vol. 11, no. 5, pp. 742–753.