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Abstract 

In genetic engineering, developing a breed with a desired trait is a search and optimization 

problem that sometimes requires many generations of field and laboratory experiments for an 

optimal solution to be found. The nature of the problem requires that a stochastic optimization 

algorithm be applied in the metaheuristic search rather than using a deterministic or 

mathematical approach. In the search for drought-tolerant cowpea, this study applied a genetic 

algorithm as a predictive analytics tool in the genetic engineering of three native cowpea 

landraces (Dan muzakkari, Gidigiwa, and Dan mesera) selected from Northern Nigeria 

(specifically from Kontagora in Niger State of Nigeria). The three cowpea species were 

subjected to mutagenic treatments using gamma irradiation and Ethyl Methane Sulphonate 

(EMS). Doses applied include 200, 400, 600, and 800 Gray of gamma irradiation and 0.372% 

v/v of EMS. Both treated and untreated cowpea landraces were planted and observed. 

Mutation-induced breeding aims to deepen the drought-tolerant trait of the cowpea mutants to 

survive conditions in drought-prone Northern Nigeria. The statistical analysis of the agro-

morphological and yield parameters of the first mutant generation (M1 generation) indicates 

that mutagenic treatments have a positive impact on both the yield and the survival of the three 

landraces as all the treated landraces yielded better than the control, particularly the treatments 

combination of 600gray and 372% v/v of EMS. Also, the predictive outcomes of the 

computational simulation that was implemented in Python programming indicate that these 

local cultivars are developing drought-tolerant genetic variability. For the three computational 

experiments, the stochastic optimizer (genetic algorithm) converged at the 9412th, 9717th, and 

14338th generations respectively. Such predictive analytics information is useful for guiding 

decision-making by researchers and breeders in the crop improvement program.  
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Introduction 

 

The search for an optimal candidate species with the desired trait in crop improvement 

programs, using either natural breeding or genetic engineering, is a metaheuristic and 

optimization search that involves many generations to achieve. Because the search problem is 

not deterministic, applying the traditional mathematical approach to predict when an optimal 

solution would be obtained is difficult. Hence, computational algorithms are applied. 
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Developing crops with required traits is practically more achievable using genetic 

engineering than natural breeding (W. Yali, 2022). This is because it is easier to modify the 

genetic make-up of crops in a controlled setting that uses genetic engineering techniques like 

mutation-induction than relying on natural breeding whose outcomes are not certain let alone 

predicting the time the desired genotypic trait would be achieved (M. Antoniou, 2021) (J. 

Muthuvel., et.al., 2021). In any case, the genetic mutation process also suffers some degree of 

uncertainty as a result of biotic and abiotic factors (E. Okewu, et.al., 2023). Biotic factors such 

as pests, insects, etc., and abiotic factors like rain, light, and wind can impact the outcomes of 

mutation-induced breeding in terms of parameters like time and yield. 

 

A system such as the crop improvement system whose outcomes are determined by 

uncertainties is a stochastic system (S.M. Kossivi., 2023) (M. Mohamed., 2023). The focus of 

breeders and researchers in such a system is to get the best possible solution within the context 

of the uncertainties, hence the problem being resolved is a stochastic optimization problem. 

Though there have been several research on using genetic engineering to induce desired traits 

in crops globally, reports on efforts to induce cowpeas with desired drought-tolerant traits so 

as to survive conditions in drought-prone Northern Nigeria have been scanty. This article 

reports on the genetic mutation of three cultivars of cowpea from Northern Nigeria, specifically 

Kontagora in Niger State.  The genetic engineering process involves treating the cowpea 

species with chemical mutagen (ethyl methyl sulphonate or EMS) and physical mutagen 

(gamma irradiation). Both treated and control (untreated) seeds were planted and observed 

under water-stressed (dry) conditions for drought-tolerant behaviors in the botanical garden of 

the Federal University of Technology, Minna, Nigeria.   

 

To guide the metaheuristic search for an optimal cowpea solution with the desired 

drought-tolerant genetic variability, the mutation-induction process was modeled 

computationally using a genetic algorithm. The essence of the computational modeling and 

subsequent implementation using Python programming was to predict when an optimal 

solution would be obtained as well as show patterns of uncertainties in the stochastic (non-

deterministic) optimization problem.  

 

 

This study aims to show empirically that predictive analytics can be applied in genetic 

engineering to resolve stochastic optimization problems. The specific objectives are: 

i. show that genetic engineering can be used to induce desired traits in crops.  

ii. model the genetic engineering of cowpeas using genetic algorithm  

iii. demonstrate that the genetic engineering of cowpeas is a stochastic optimization problem 

 

 

The search and optimization problem in genetic engineering underscores the need to 

apply predictive analytics like genetic algorithms in this field. For a given species, controlled 

modification of the chromosome to achieve desired traits takes generations and happens amid 

uncertainties and therefore needs predictive analytics for accurate bioinformatic information 

that guides decision-making (E. Okewu, et.al., 2023). The cardinal objective of genetic 

engineering is to insert random genes in offspring to sustain the genetic diversity in a defined 

population in a bid to prevent premature convergence. GA has a mutation operator as one of its 

three operators, alongside a selector operator and crossover operator (S.M. Lim., et.al., 2017) 

While the selector operator prioritizes individuals with better fitness scores, giving them the 

latitude to transfer their genes to succeeding generations, the crossover operator represents 
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mating between individuals selected during the selection process. The choice of crossover sites 

is made randomly and the genes in these sites are exchanged to create completely new offspring 

or individuals. Any of these operators (or combination) is used by GA to evolve a generation 

after creating it as the starting generation. Upon specifying a target string, GA progresses to 

produce the same using a random string with a similar length. The generated string is 

represented using special symbols and normal characters like A-Z, a-z, and 0-9, which are 

considered genes. This string is referred to as a solution chromosome or individual. The fitness 

score is the number of characters in the random string that are different from the target string 

characters at a particular index. As a result, an individual with a lower fitness score is given 

priority. A fitness score indicates the ability of an individual to compete. The application of 

predictive analytics in genetic engineering involves using stochastic search algorithms like GA 

to search for a solution (chromosome) with optimal or near-optimal fitness value as a 

convergence criterion. The algorithm keeps track of the population of solutions along with their 

respective fitness scores to enable individuals with better fitness scores to reproduce themselves 

faster than others. Similarly, individuals with better fitness scores are selected to mate in a 

deliberate effort to produce better offspring via the combination of parents' chromosomes. 

Given the static nature of the population, there is a need to create space for new arrivals.  In the 

process, some individuals die and are replaced by fresh arrivals, giving rise to a new generation 

at the end of the old population’s mating opportunity.  As the least-fit solutions die, better 

solutions emerge over successive generations. Studies have shown that on average, each 

generation has better genes than the solution of previous generations, implying that successive 

generations have better solutions than those of past generations. Convergence of the genetic 

engineering process occurs when an offspring produced is not substantially different from the 

offspring of previous populations. Predicting convergence using GA is considered as a 

stochastic optimization because, in every implementation, GA commences with a new random 

string, resulting in a different output (M. Liu, 2016). Also, predictive analytics algorithms 

sometimes get stuck at a local optimum solution but can be improved upon using tweak 

mutation and crossover operators or by updating the calculation algorithm used for the fitness 

score. 

 

Constrained Stochastic Optimization Problem  

Solving constrained stochastic optimization (CSO) problems is hard and also it cannot 

be solved using normal linear or nonlinear optimization (] M. Mohamed., 2023). The 

characteristic of CSO problems is that some or all the variables are random variables. In a given 

system such as the genetic engineering system, the use of random variables is to represent 

uncertainties in the system. The variables are used in the event there is fluctuation in the 

parameters of the problem in a given range of values. They are also used when it is hard to 

assess their expected values. CSO problems can be found in domains like genetic engineering, 

communication networks, transport engineering, etc. Designers in such environments ents use 

CSO models in that the systems have to be modeled within the range of mid to long-term period. 

Predictive analytics and stochastic optimizers like GA are used in solving CSO problems since 

using conventional methods can be complicated; GA leverages computational techniques to 

offer accurate and simple solutions (L.A. Sanabria., 2004). The process of mutation in genetic 

engineering is computationally modeled as a string manipulation in GA and the algorithm 

progresses from the initial solution (random string) to the optimal solution (target string) using 

mutation and selection operators. In crop improvement programs, there are biotic (insects, pests, 

rodents, etc.) and abiotic (sunshine, wind, rainfall, etc.) constraints and uncertainties which are 

represented by the random string. These constraints and uncertainties can impact genetic 

diversity. In this regard, genetic mutation or mutation-induced breeding is a classic example of 

the constrained stochastic optimization problem.  
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Review of Related Works 

The study in (Y. Mohamed Y., et.al., 2020) used genetic engineering for crop 

improvement in a bid to improve general polygenic features and yield. The research created 

genetic variation using chemical mutagens to induce a male sterile system in cowpea which 

facilitates hybridization but is lacking in cowpea. Other objectives achieved included analysis 

of the impact of chemical mutagens on different morphological features, studying M1 

generation genetic diversity, and stipulating LD 50 benchmark for Ethyl Methane Sulphonate 

(EMS). The mutation-induction in the Vamban 2 cowpea cultivar was executed with the use of 

eight treatments (10, 20, 30, 40, 50, 60, 70 and 80 mM) of EMS. This was followed by obtaining 

the LD50 values on account of observations of seed germination, root length, and shoot length 

under laboratory conditions. The M1 generation was raised under field conditions to assess 

parameters such as single 100 seed weight, plant yield, number of pods per plant, number of 

seeds per pod, pollen fertility, number of branches per plant, plant height at maturity, and 

germination of seeds. The results showed that increased EMS concentration had a negative 

correlation with phenotypic expression and yield characters. The study observed that the 

production of cowpeas is an essential component of sustainable agriculture as well and the crop 

is a good source of protein which contains amino acids like lysine and tryptophan. The article 

reported that cowpea has free metabolites or other toxins, and it is a nutritious grain legume 

produced extensively in arid and semi-arid tropics. However, the genetic engineering process 

adopted by this study used only chemical mutagen while the present study uses chemical 

mutagen (EMS) and physical mutagen (gamma irradiation) for mutation-induction. Also, the 

target of the GE approach in this study is the induction of a cowpea male sterile system 

responsible for hybridization while our GE effort in this present research targets drought 

tolerance in cowpea. 

 

In (Udhaya KD., 2019), the researchers found out that the combination of gamma rays and EMS 

in the genetic engineering of moringa plants created mutations with decreased biological 

damage, leading to the recommendation that both mutagens should be used to induce moringa 

for desirable qualities.  Before arriving at this conclusion, the study induced the PKM-1 variety 

of moringa with gamma rays and EMS. When compared with the untreated control, it was 

observed that an increased dose of the mutagens mitigated the probability of seed germination 

and survival. The study confirmed the fact that the essence of plant breeding using techniques 

like genetic engineering is to change and better the genetic structure of crops to meet farmers’ 

specific demands. Because natural breeding has the challenge of low genetic variation, breeders 

are resorting to mutation breeding. In genetic engineering practices, EMS and gamma 

irradiation (application of gamma rays) are now generally used in inducing mutation in many 

plant varieties. Though the research focused on using both physical and chemical mutagens to 

achieve many desired traits in moringa plants, our current work focuses on using both mutagens 

to induce drought tolerance in cowpeas. Also, the present research formulated genetic mutation 

as a constrained stochastic optimization problem with the application of predictive analytics 

(non-exhaustive method) like GA to solve the CSO problem. 

 

The constrained stochastic optimization (CSO) problem is the focus of the authors in 

(L.A. Sanabria., et., al. 2004) CSO problem is defined as a problem that is difficult to solve or 

better still, cannot be resolved using linear or nonlinear optimization. In CSO problems, some 

or all the variables are random variables that are used to qualify uncertainties in a given system. 

The variables are used to show fluctuation in problem parameters in a specific range of values. 

They are also used when it is hard to assess their expected values. Such problems are present 

in genetic engineering, communication networks, transport engineering, etc. In these fields, 
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CSO models are used because the design of the systems is on a mid to long-term basis. Because 

solving a CSO problem using conventional mathematical methods is complex, the study 

recommended computational techniques like GA which offers simple and accurate solutions. 

The study demonstrated the use of GA by finding the optimum design of an Intranet server 

using the algorithm. The work advocates the use of GA in solving optimization problems, 

including CSO problems. Our current research aligns with this study as predictive analytics in 

genetic engineering is viewed as a CSO problem, a claim to be assessed using the mutation-

induction of cowpea species from Northern Nigeria. We equally use GA to formulate the 

mutation process as a string manipulation, followed by the implementation of the algorithm in 

Python programming.   

 

Liu in (M. Liu ., et., al., 2016) stressed that GA is used in several fields such as bioinformatics, 

economics, engineering, manufacturing, etc. The authors stressed the utility of stochastic 

optimization problems in power electronics and control systems for the fact that there is a need 

to select optimum parameters that offer the least noise effect and maximum control effect in 

many designs. Resolving such a problem is complex using an exhaustive search method 

especially when the search domain is huge or infinite. Instead, heuristic search algorithms such 

as GA is used. There is difficulty associated with evaluating real-life problems with noise and 

huge computation is needed. As such, the study proposed for such a real-life problem a solution 

that involves a single objective GA that incorporates computing budget allocation in the 

selection operator rather than using it during evaluation of fitness. The researchers also studied 

multi-objective GA which compares the integration of various methods of calculating budget 

allocation in any of the assessments or the steps in environmental selection. The comparisons 

take into consideration various levels of noise that are executed on stochastic problems derived 

from multi-objective optimization problems that are standard. Though the work classified GA 

as a stochastic optimizer, it did not specify how GA could be used in modeling predictive 

analytics in genetic engineering in this present research.  

 

In (Q. Cui., et., al. 2020), the authors investigated drought tolerance in Arkansas 

cowpea species. The study used drought-tolerant lines as parents for breeding and emphasized 

that the crop is a leguminous crop that exhibits some level of natural drought resistance. As a 

result, many cowpea lines can survive under hot and dry conditions for upward of 40 days.  To 

confirm this, the researcher used 36 University of Akansa cope lines in screening for drought 

tolerance at the seedling stage. The experiment took place in a greenhouse using a randomized 

complete block design (RCBD) to arrange two replicates in a split-plot format. After subjecting 

the cowpea to drought stress for four weeks, three characteristics that indicate drought 

tolerance were observed and analyzed.  Although we agree with the work that cowpea has 

some drought-resistant abilities as evident in their capability to survive in environments with 

scanty rainfall, there is a need to apply genetic engineering to deepen the genetic variability of 

cowpea to withstand increased climate-induced drought-prone conditions in Northern Nigeria. 

This explains why the present study is leveraging mutation induction for this purpose.   

      

None of the works formulated predictive analytics in genetic engineering as a 

constrained stochastic optimization problem, the core consideration of this present research. 

Also, none modeled mutation-induction for drought tolerance using GA and implemented the 

same using Python programming to prove experimentally that predictive analytics in genetic 

engineering is a constrained stochastic optimization problem.  

 

 

Methodology 
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Three landraces of cowpea namely; Dan muzakkari, Gidigiwa, and Dan mesera, were collected 

through direct contact with the farmers in Kontagora, Niger State, in Northern Nigeria. 

Kontagora is known as one of the largest producers of cowpea in Niger State, Nigeria (M.A. 

Maikasuwa., and A.A. Izo, 2020). The selection of the landraces was based on their yield 

potential and known drought-tolerant genotypes.  

The three landraces of cowpea were subjected to mutagenic treatments using gamma 

irradiation and Ethyl Methane Sulphonate (EMS). Different doses of gamma irradiation, 

including 200, 400, 600, and 800 Gray, were applied to the cowpea landraces. The selection 

of these doses was based on previous studies that have demonstrated their effectiveness in 

inducing desirable mutations (E.S. Savitri, and S.M. Fauziah., 2020). 

 

Additionally, EMS was used as a mutagenic treatment at a dosage of 0.372% v/v. This 

particular dosage has been identified as the optimum treatment for inducing mutations in 

cowpeas (Y. Mohamed Y., et., al., 2020). The mutagenic treatments were done following the 

guidelines and protocols recommended by the FAO/IAEA Agricultural and Biotechnology 

Laboratory in Seibersdorf, Austria. The cowpea seeds were soaked with distilled water for 

1hr:30mins, after which the water was drained from the soaked seeds, then 1% of ethyl 

methane sulphonate was prepared to make 100ml with distilled water as the stock solution. 

3ml of the stock solution was taken to make up with 97ml of distilled water, making a total 

of 100ml. The diluted ethyl methane sulphonate was used to soak the seeds again for another 

1hr:30mins after which the cowpea seeds were washed with clean water before planting. 

 

The experimental site for this study is located at the experimental garden, Department 

of Plant Biology, Federal University of Technology, Minna, Nigeria. Minna is geographically 

located in the North Central Zone of Nigeria, within longitude 6o 33' East and latitude 9o 37' 

North. It is a grassland savannah area and has a tropical climatic condition with a mean annual 

temperature, relative humidity, and rainfall of 20-30oC, 61.00%, and 1334.00 cm respectively. 

The climate brings about two seasons: a rainy season between May and October and a dry 

season between November and April (F. Odegbenro., 2022). 

 

The experimental design employed in this study is a Complete Randomized Design 

(CRD). A total of thirty treated seeds including the control were assigned identification 

numbers and replicated three times to make a total of ninety pots altogether. For each cowpea 

landrace, six seeds were planted in 10-litre plastic pots that were perforated at the base. The 

pots were filled with 10 kg of topsoil. After 8 days of planting (DAP), the plants were thinned 

to four seeds per pot to ensure optimal growth. 

 

Water stress treatment was induced at the vegetative stage; this was imposed after 14 

days of initial growth of the plants. Initially, the soil moisture level for all three cowpea 

landraces was maintained at field capacity, which corresponds to 50% of the maximum water-

holding capacity. The well-watered treatment (no stress) was continuously maintained at field 

capacity throughout the experiment. Soil moisture levels were monitored using a soil moisture 

meter (MO750, Extech Instruments, USA). 

 

To determine the effects of gamma irradiation and ethyl methane sulphonate (EMS) on 

cowpeas, selected plants from the different landraces were screened for both qualitative and 

quantitative traits. The quantitative traits were parameters such as number of pods per plant, 

pod length, stem diameter, seed yield, and seed weight per plant. These traits were measured 

using appropriate instruments and techniques, ensuring accurate and consistent data collection. 
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In addition to the quantitative traits, qualitative parameters related to seed characteristics, such 

as shapes and colors, were observed and scored. The qualitative scoring provided valuable 

information on the visual characteristics of the mutant lines and their comparison to the original 

landraces. 

 

The data obtained on quantitative characters were subjected to analysis of variance 

(ANOVA) to determine the level of significance among the treatments while the post hoc test 

was carried out using Duncan’s Multiple Range Test (DMRT) to separate the means where 

necessary using SPSS software version 18.  

 

Computational Experiment 

To provide information on progress made in the genetic variability of the mutant lines 

in each generation, the mutation process was computationally modeled using a genetic 

algorithm and implemented using Python programming. The genetic algorithm for the 

predictive analytics is as follows: 

 

1) Target String (desired cowpea chromosome/genotype) = mutation-
induced drought-tolerant cowpea 

 
2) Length (Target String) = 40  

 
3) Random String (initial cowpea chromosome/genotype) =              

tttaaa!!!!&&&&&7777%%%%%5555ffff999$$$rr 
 

4) Fitness Score (Genetic Distance) = the number of characters in 
the Target String that are different from those in the Random 
String 

 
    5) While Fitness Score (Genetic Distance) > 0 repeats:  
      a) Choose parents from the population 
      b) Implement mutation on a new population to get New String 
      c) Calculate the Fitness Score (Genetic Distance) for the new 
population 
      d) Random String =      New String 
 

The primary objective of the above algorithm is to conduct a heuristic search for a 

cowpea solution with optimal drought-tolerance trait. Hence the genetic mutation is 

modelled as a string manipulation using the target string mutation-induced 

drought tolerant cowpea.  

The flowchart for the mutation-induced drought-tolerant trait process is shown in 

Figure 1.  
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Figure 1. Process flow for predictive analytics in genetic engineering 
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Results and Discussion 

 

The research aimed to unravel the intricate impact of gamma irradiation and Ethyl Methane 

Sulphonate (EMS) treatments on agro-morphological and yield parameters of three distinct 

cowpea varieties namely Dan mesera (V1), Dan muzak kari (V2) and Gidigwa (V3). The 

results unveiled a diverse array of responses across treatments and durations, contributing to a 

comprehensive understanding of the influence of these treatments on cowpea growth. 

 

Effects of Gamma Irradiation and Ethyl Methane Sulphonate on Agro-Morphological 

Parameters (Plant Heights). 

 

Table 1 shows the results of a study on the effects of gamma irradiation, ethyl methane sulfonate 

(EMS), and their combination on plant height (PH) of three varieties of cowpea (V1, V2, and 

V3). The study was conducted at different durations after planting (2 weeks, 4 weeks, 6 weeks, 

and 8 weeks respectively). 

 

Table 1. Effects of Gamma Irradiation and Ethyl Methane Sulphonate on Plant Heights 

Parameter PH2 PH4 PH6 PH8 

V1 19.50±1.32cde 27.30±3.74g 30.87±3.01ef 33.07±3.45a 

V2 22.90±0.36e 23.80±0.17cdefg 31.90±3.01f 33.10±2.69a 

V3 19.90±1.55cde 24.67±1.33defg 30.77±3.12ef 32.20±3.65a 

V1G1 14.34±2.07abc 15.87±2.03ab 19.63±2.71ab 23.37±1.39a 

V1G2 
18.67±2.46bcd

e 
22.60±1.16bcdefg 26.37±1.59bcdef 27.40±1.68a 

V1G3 
18.90±2.08bcd

e 
22.77±1.41bcdefg 27.37±3.06bcdef 29.20±2.72a 

V1G4 20.27±1.37cde 25.50±1.10efg 28.60±2.77cdef 30.10±3.10a 

V1E 19.47±1.89cde 23.43±0.70defg 24.57±0.43abcdef 27.93±1.57a 

V2G1 16.73±0.72bcd 
21.57±0.73abcdef

g 
25.10±1.45abcdef 26.57±1.22a 

V2G2 
18.10±0.95bcd

e 
22.90±1.32bcdefg 25.17±1.48abcdef 27.07±1.48a 

V2G3 
17.40±3.32bcd

e 
20.97±2.77abcdef 22.40±2.55abcde 25.50±3.79a 

V2G4 
17.67±0.27bcd

e 
22.50±1.54bcdefg 24.33±1.87abcdef 25.67±1.84a 

V2E 15.73±0.50bcd 
21.67±0.29abcdef

g 
27.23±1.58bcdef 28.10±1.50a 

V3G1 19.43±2.75cde 23.33±3.00cdefg 28.50±2.08cdef 30.80±1.78a 

V3G2 15.20±0.20bcd 19.93±0.87abcde 24.60±2.71abcdef 26.83±2.20a 

V3G3 
18.77±1.55bcd

e 

21.87±1.30abcdef

g 
26.73±3.32bcdef 28.73±3.41a 

V3G4 
17.00±1.01bcd

e 
20.00±1.04abcde 22.17±1.70abcd 26.70±0.79a 

V3E 19.40±3.05cde 22.20±2.29bcdefg 25.27±0.87abcdef 28.50±0.90a 
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V1G1E 
17.80±2.76bcd

e 
23.97±1.33defg 28.37±2.66cdef 31.63±1.73a 

V1G2E 
18.46±1.43bcd

e 
22.83±3.57bcdefg 25.07±2.60abcdef 26.80±2.31a 

V1G3E 20.87±2.51de 26.37±0.98fg 29.07±2.15cdef 32.00±2.31a 

V1G4E 
14.87±1.93abc

d 
18.23±3.49abcd 21.37±4.48abc 21.50±3.96a 

V2G1E 19.47±0.79cde 
21.47±0.58abcdef

g 
30.33±5.36def 30.23±5.64a 

V2G2E 13.07±0.57ab 17.10±0.40abc 19.10±0.71ab 22.27±2.38a 

V2G3E 9.57±1.55a 15.00±1.45a 17.07±0.91a 19.67±0.96a 

V2G4E 16.47±0.47bcd 20.23±0.23abcdef 23.10±0.89abcde 28.30±3.55a 

V3G1E 
19.00±3.06bcd

e 
22.17±2.03bcdefg 26.27±1.60bcdef 27.47±1.78a 

V3G2E 16.50±0.90bcd 
21.97±0.98abcdef

g 
26.50±2.25bcdef 28.07±2.72a 

V3G3E 16.67±1.36bcd 22.17±2.49bcdefg 24.43±1.84abcdef 26.33±1.20a 

V3G4E 
18.17±0.73bcd

e 
22.90±1.19bcdefg 25.30±0.70abcdef 112.23±5.89b 

Values are Mean±Standard Error of Mean. Means with the same letter(s) within a set of treatment 

column are not significantly different at p ≤ 0.05 using Duncan Test 

 

The results (Table 1) showed that the PH of all three varieties of cowpea increased with 

duration after planting. However, the PH of the varieties treated with gamma irradiation and 

EMS was significantly lower than the PH of the varieties that were not treated. 

 

For example, at 2 weeks after planting, the PH of V2 that was not treated with either 

gamma irradiation or EMS recorded the highest value of 22.90cm while the same variety2 

treated with a combination of gamma and EMS recorded the lowest value of 9.57cm which 

shows that both gamma and EMS has negative effects on plant height at week2. 

 

The results further revealed that the combination of gamma irradiation and EMS had a 

more negative effect on PH. For example, at week 4 and week 6 after planting, the PH of both 

variety1 and variety2 control treatments recorded 27.30cm and 31.90cm respectively which 

were the highest while the combination of gamma and EMS treatments showed the lowest 

values of 15.00cm and 17.07cm at week 4 and 6 respectively.   

 

Effects of Gamma Irradiation and Ethyl Methane Sulphonate on Yield Parameters 

Table 2 shows the results of a study on the effects of gamma irradiation and ethyl methane 

sulfonate (EMS) on the number of pods, length of pods, number of seeds per pod, weight of 

seed pod, and weight of 100 seeds of three varieties of cowpea (V1, V2, and V3). 
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Table 2 Effects of Gamma Irradiation and Ethyl Methane Sulphonate on Yield Parameters.  

 

Parame

ter No of Pods Length of Pods No of Seeds/Pod 

Weight of of    

Seeds/Pod 

Weight of 

100 Seeds 

V1 35.00±6.66ef 11.00±0.70abc 8.20±0.88abcd 2.09±0.12ab 23.60±0.42c 

V2 35.33±3.71f 15.00±0.00ghi 11.70±0.76efgh 3.11±0.20cdef 
16.80±0.70a

b 

V3 
26.33±9.02bcd

ef 
14.50±0.50fghi 

10.10±0.94bcdefg

h 
3.16±0.40cdef 23.50±0.00c 

V1G1 10.00±1.15abc 12.60±0.65cde 
10.00±0.77bcdefg

h 
3.11±0.26cdef 

24.10±0.50c

d 

V1G2 
28.67±7.19cde

f 
11.30±0.75abc 9.40±0.90abcdef 

2.43±0.32abcd

ef 
22.01±0.65c 

V1G3 10.67±4.26abc 13.00±0.45def 11.00±1.13defgh 
2.69±0.20bcde

f 
23.00±0.75c 

V1G4 
13.67±5.21abc

d 
10.10±0.64a 7.60±0.64ab 2.16±0.21abcd 

24.22±0.37c

d 

V1E 
14.00±5.03abc

d 
13.00±0.47def 

10.00±0.00bcdefg

h 
3.00±0.26cdef 

24.63±0.64c

d 

V2G1 32.33±8.41def 
13.70±0.42defg

h 
10.70±0.92defgh 3.45±0.24ef 

25.20±0.47c

d 

V2G2 
16.00±2.08abc

def 

13.80±0.25efgh

i 
9.90±0.71bcdefgh 2.96±0.25cdef 

25.50±0.51c

d 

V2G3 
15.33±2.40abc

def 
13.30±0.52defg 

9.80±0.95abcdefg

h 

2.56±0.31bcde

f 
22.30±0.71c 

V2G4 
16.33±6.84abc

def 
13.50±0.31defg 8.60±0.73abcde 

2.69±0.23bcde

f 

27.00±0.36d

e 

V2E 
14.67±4.81abc

def 
14.50±0.34fghi 11.10±0.91defgh 3.61±0.21def 33.30±0.33e 

V3G1 
14.33±6.12abc

de 
15.00±0.45ghi 11.30±0.83efgh 3.03±0.23cdef 19.10±0.38b 

V3G2 
17.67±4.10abc

def 
13.60±0.48defg 12.20±0.59efgh 2.98±0.20cdef 19.90±0.45b 

V3G3 
12.00±3.61abc

d 
15.50±0.37i 12.60±0.52h 3.36±0.25def 13.00±0.48a 

V3G4 
13.33±2.33abc

d 
14.50±0.54fghi 12.40±0.54efgh 3.25±0.20def 22.20±0.37c 

V3E 
18.00±4.62abc

def 
15.40±0.40hi 

10.10±1.22bcdefg

h 

2.34±0.17abcd

e 

17.60±0.54a

b 

V1G1E 6.67±3.18ab 13.10±0.38def 
10.00±0.84bcdefg

h 
3.02±0.20cdef 

24.30±0.40c

d 

V1G2E 
17.33±1.48abc

def 
12.60±0.69cde 8.30±1.01abcd 

2.46±0.31abcd

ef 
23.20±0.38c 

V1G3E 
24.67±7.80abc

def 
10.80±0.33ab 6.90±0.77a 1.82±0.22a 21.60±0.69c 

V1G4E 4.00±2.00a 11.30±0.79abc 
9.80±0.70abcdefg

h 
2.86±0.21cdef 23.40±0.33c 

V2G1E 
15.00±2.89abc

d 
13.30±0.87defg 

10.30±0.82bcdefg

h 
3.01±0.35cdef 

26.70±0.79c

d 
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V2G2E 
12.33±3.18abc

d 
12.00±0.65bcd 8.20±1.54abcd 

2.59±0.44bcde

f 
23.50±0.87c 

V2G3E 8.00±1.15abc 14.60±0.31fghi 
9.60±0.88abcdefg

h 
2.88±0.25cdef 

24.60±0.65c

d 

V2G4E 
21.33±6.64abc

def 
13.40±0.65defg 10.60±0.69cdefgh 3.71±0.17f 22.40±0.31c 

V3G1E 
20.00±6.56abc

def 

13.80±0.51efgh

i 
9.50±0.96abdefg 

2.46±0.19abcd

ef 

19.50±0.45b

c 

V3G2E 
18.67±4.06abc

def 

13.90±0.41efgh

i 
11.90±0.85efgh 

2.54±0.15bcde

f 

17.00±0.36a

b 

V3G3E 
21.33±6.33abc

def 
14.90±0.31ghi 12.50±0.85gh 3.13±0.16cdef 19.00±0.32b 

V3G4E 13.33±1.67abc 14.40±0.31fghi 7.70±1.02abc 2.15±0.32abcd 21.30±0.53c 

Values are Mean±Standard Error of Mean. Means with the same letter(s) within a set of 

treatment columns are not significantly different at p ≤ 0.05 using Duncan Tests 

Aa – no significant difference 

Ab – there is a significant difference 

Abc – a higher significant difference 

 
The table shows the number of pods (No of Pods), length of pods (Length of Pods), number of 

seeds per pod (No of Seeds Pod), weight of seed pod (Weight of Seed Pod), and weight of 100 

seeds (Weight of 100 Seeds) of all three varieties of cowpea were affected by gamma irradiation 

and EMS.  

 

Predictive Analytics in the Genetic Engineering Process  

Tables 3, 4, and 5 show the results of studies on the computational modeling of the mutation-

induced drought tolerance of the local cowpea species (Dan muzakkari, Gidigiwa, and Dan 

mesera). The aim is to forecast bioinformatic outcomes for informed decision-making in 

investigation and breeding efforts. Earlier studies has shown that genetic algorithms can be 

used to forecast bioinformatic outcomes of mutation-induction [7]. 

 

Each of the three experiments has the target string (optimal solution) of “mutation-induced 

drought-tolerant cowpea” derived at a fitness score (genetic distance) of 0 while each 

experiment generated a different initial random string. The random string is a computational 

representation of the uncertainties in the genetic engineering process imposed by biotic factors 

(insects, pests, rodents, micro-organisms, etc) and abiotic factors (sunshine, wind, rain, etc). 

The ability of GA to generate random strings and also generate different random strings for 

each experiment despite solving the same problem is an affirmation that GA is a constrained 

stochastic optimizer [5], [9].   

The results of Experiment 1 in Table 3 show that the algorithm converged at 9412th with a 

fitness score (genetic distance) of 0. In essence, the algorithm is predicting that the optimal 

cowpea solution with the desired drought-tolerant feature would be obtained at the 9412th 

generation represented by the string (chromosome) mutation-induced drought-tolerant cowpea. 
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   Table 3. Experiment 1 results 

Generation Random String Fitness 

Score 

Generation 1 Jdt?iiG&5"Bq=g0dD/B4P9evy[- 4gunLBkK&mw) 36 

Generation 2 String: Jdt?iiG&5"Bq=g0dD/B4P9evy[- 

4gunLBkK&mw) 
36 

Generation 3 Jdt?iiG&5"Bq=g0dD/B4P9evy[- 4gunLBkK&mw) 36 

Generation 4 Jdt,iiG&"Bq,g0d;C{qPqevy[! 4gun2BKKw;w) 35 

Generation 5 2B(PldT/WwnFjc dgMRn tyHYd)2e}2{j"TKwIea 33 

Generation 6 2B(PldT/WwnFjc dgMRn tyHYd)2e}2{j"TKwIea 33 

Generation 7 J3t8Mion3"n1,budpZUPqTHXtL e&Z;2cX}2}e) 31 

Generation 8 J3t8Mion3"n1,budpZUPqTHXtL e&Z;2cX}2}e) 31 

Generation 9 J3t8Mion3"n1,budpZUPqTHXtL e&Z;2cX}2}e)

  

31 

Generation 10 J3t8Mion3"n1,budpZUPqTHXtL e&Z;2cX}2}e)

  

31 

…. …. … 

Generation 94

09 

mutation-induced dr}ught tolerant cowpea

  

1 

Generation 94

10 

mutation-induced dr}ught tolerant cowpea

  

1 

Generation 94

11 

mutation-induced dr}ught tolerant cowpea

  

1 

Generation  94

12 

mutation-induced drought-tolerant cowpea

  

0 

 

Table 3 shows further that in the first generation (M1), the fitness score (genetic distance) is 36 

while the random string is Jdt?iiG&5"Bq=g0dD/B4P9evy[- 4gunLBkK&mw.  

In Table 4, outcomes of Experiment 2 are shown.  The GA converged at the 9717th generation 

with fitness score (genetic distance) of 0. 

  Table 4. Experiment 2 results 

Generation Random String Fitness 

Score 

Generation 1 f%evEqv)-%s1;)J#&HrJ4UgwgKF& w?N/jqjB#" 38 

Generation 2 f%evEqv)-%s1;)J#&HrJ4UgwgKF& w?N/jqjB#"

  

38 

Generation 3 Bu;R]1ncWia8j2]V18XHZgET:]F?v:HdlW.t#Uqa

  

36 

Generation 4 Bu;R]1ncWia8j2]V18XHZgET:]F?v:HdlW.t#Uqa

  

36 

Generation 5 iVt!(6ULGyyKuidFh1o5]JtsQDqT09A7 kM/qT  35 

Generation 6 i1tu;onIZ}-foiR$YGx&gtDYsf 0H9MG Ho/Y[4 34 

Generation 7 dus![on]-iqX6#]g KrYQgTtop4?]/K]z0jwcp6D

  

32 
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Generation 8 dus![on]-iqX6#]g KrYQgTtop4?]/K]z0jwcp6D

  

32 

Generation 9 Cut(uto]!A&u%O_V QJl&ghR KfS=H:K5 HS!p{ 31 

Generation 1

0 

Gut(u;opJZ-#{Oi71oJLZght ?f M2a$5 5oYp5z

  

29 

…. …. … 

Generation 9

714 

mutation-ind=ced drought tolerant cowpea 1 

Generation 9

715 

mutation-ind=ced drought tolerant cowpea 1 

Generation 9

716       

mutation-ind=ced drought tolerant cowpea 1 

Generation 9

717 

mutation-induced drought tolerant cowpea 0 

 

However, in the same Experiment 2 (Table 4), the random string in M1 is f%evEqv)-%s1;

)J#&HrJ4UgwgKF& w?N/jqjB#" though the fitness score (genetic distance) is 38.  

In Table 5, the results obtained during Experiment 3 are presented. The convergence of the 

algorithm, which indicates the end of the metaheuristic search for an optimal cowpea solution, 

happened at the 14338th generation. 

   Table 5. Experiment 3 results 

Generation Random String Fitness 

Score 

Generation 1 qSE==hTm/2K8c1d$J:8ANAJvs(p=%qw  ;;yv/g 37 

Generation 2 qSE==hT m/2K8c1d$J:8ANAJvs(p=%qw  ;;yv/g 37 

Generation 3 dS?m]IL/g//cwH$t:dBgpA?aXp4&G}X Vw/Y=@ 36 

Generation 4 dS?m]IL/g//cwH$t:dBgpA?aXp4&G}X Vw/Y=@ 36 

Generation 5 $fEZVim6]iDK8A?d1JHTxNALtwp=Xqw) nn#v@H 35 

Generation 6 Uf#ki36wioD],ed MyPh5$%JmmD_-C39 2[GY7? 34 

Generation 7 Tne SiY.mID/GQed$dy9tg]LJq$-4vz9  2oC2=S 33 

Generation 8 {{,Zvi.F&lGI4Q?dIdy-8gtwQtd-Q0G)9 c75p%m 32 

Generation 9 qu?[=i nwiiLMc?Hd,8&NW1?1HueFq)t Yoy2z3 30 

Generation 10 TuE[=i nwI4Lsc5AI8&NoL?tHueFz)t coY2pO 29 

…. …. … 

Generation 1433

5 

mutation-induced drought toEerant cowpea 1 

Generation 1433

6 

mutation-induced drought toEerant cowpea 1 

Generation  143

37        

mutation-induced drought toEerant cowpea 1 

Generation  143

38 

mutation-induced drought tolerant cowpea 0 
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Meanwhile, Experiment 3 (Table 5) produced a random string with the fitness score (genetic 

distance) of 37 at in the first generation (M1). The random string is 

qSE==hTm/2K8c1d$J:8ANAJvs(p=%qw;;yv/g.  

The results of the three experiments indicate that the algorithm sometimes gets stuck at a local 

optimum solution (plateau). In Experiment 1, for example, this happened in generations 5 and 

6. In Experiment 2, generations 7 and 8 experienced a plateau while in Experiment 3, the 

algorithm got stuck at the local optimum in generations 14335, 14336, and 14338.  However, 

improving on the plateau is achievable by either tweaking the mutator operator or updating the 

fitness score calculation algorithm.   

The above empirical outcomes have confirmed that applying predictive analytics in genetic 

engineering is a constrained stochastic optimization problem. It also shows that GA exhibits 

stochastic optimization like deep neural network (DNN) (E. Okewu., et., al., 2022). This is 

evident in the fact that in the same problem of applying predictive analytics in the genetic 

engineering of cowpeas for drought-tolerant traits to withstand climate-induced drought-prone 

conditions in Northern Nigeria, GA generated different random strings in each of the three 

experiments. Also, its convergence in the three experiments happened at different generations. 

While both GA and DNN can be used to solve CSO problems, their modus operandi differ. 

DNN uses random variables while GA uses random string in their heuristic search and 

optimization aimed at converging to an expected value. While the difference between the actual 

value and expected value in GA is referred to as fitness score, in DNN it is called error value. 

Both stochastic optimizers converge at the point where the fitness score/error is within the limit 

of tolerance or better still, zero.   

From the aforementioned, the three (3) specific objectives of this work have been achieved: 

the analysis of the agro-morphological and yield parameters showed that genetic engineering 

of the cowpea cultivars indeed induced drought-tolerant traits. Also, the genetic engineering 

process was modeled using a genetic algorithm implemented using Python programming. 

Outcomes of the computational experiments (execution of the Python programs) that the 

genetic engineering of cowpea is a stochastic optimization problem  

    

Conclusion 

 

Genetic engineering and gene drives are important in the conservation of crops (R. Sandler., 

2020). The search for native cowpea species that can withstand the increased climate-induced 

drought-prone conditions in Northern Nigeria, and by extension its conservation, is the 

motivation for this work. For indigenous cowpea cultivars to survive the climate-imposed 

drought conditions, their genetic diversity has to incorporate drought-resilient traits. Achieving 

this using natural breeding is near-impossible. Hence, genetic engineering was applied to the 

treatment of selected cowpea landraces Northern Nigeria (specifically, from Kontagora in 

Nigeria State) with chemical mutagen (EMS) and physical mutagen (gamma rays). To guide 

decision-making by investigators and breeders in the crop improvement program, predictive 

analytics was applied using genetic algorithm. Results of both field experiments and 

computational experiments indicate that the cowpea species are developing drought-tolerant 

traits from generation to generations. While the agro-morphological and yield parameters show 

positive results, the computational results predict when an optimal cowpea solution would be 

obtained. The uncertainties and constraints posed by biotic and abiotic factors underscore the 
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fact that predictive analytics in genetic engineering is a constrained stochastic optimization 

problem. 

 

Conflict of Interest 

There is no conflict of interest between the authors in the execution of this study. 

 

 

References 

 

Antoniou, M. (2021). What is GM and what are the health risks? ENVI Committee - European 

Parliament. https://www.europarl.europa.eu/cmsdata/237985/Antoniou.pdf 

Cui, Q., Xiong, H., Yufeng, Y., Eaton, S., Imamura, S., Santamaria, J., Ravelombola, W., 

Mason, R. E., Wood, L., Mozzoni, L. A., & Shi, A. (2020). Evaluation of Drought 

Tolerance in Arkansas Cowpea Lines at Seedling Stage. HortScience, 55(7), 1132–

1143. https://doi.org/10.21273/hortsci15036-20  

L. A. Sanabria, B. Soh, T. S. Dillon and L. Chang (2003) Genetic algorithms in stochastic 

optimisation, The 2003 Congress on Evolutionary Computation, 2003. CEC '03., 

Canberra, ACT, Australia, 2003, pp. 815-822 Vol.2, doi: 

https://doi.org/10.1109/CEC.2003.1299751    

Lim, S. M., Sultan, A. B. M., Sulaiman, M. N., Mustapha, A., & Leong, K. Y. (2017). Crossover 

and Mutation Operators of Genetic Algorithms. International Journal of Machine 

Learning and Computing, 7(1), 9–12. https://doi.org/10.18178/ijmlc.2017.7.1.611  

Liu, M. (2016). Genetic Algorithms in Stochastic Optimization and Applications in Power 

Electronics. https://doi.org/10.13023/etd.2016.475 

 

Maikasuwa, M. A., & Izo, A. A. (2022). Impact of Purdue Improved Cowpea Storage (PICS) 

Bag on the Profitability of Cowpea Storage in Kontagora Local Government Area of 

Niger State. Equity Journal of Science and Technology, 8(1), 79–

83. https://doi.org/10.4314/equijost.v8i1.13  

 

Mnif, M., & Pham, H. (2001). Stochastic optimization under constraints. Stochastic Processes 

and Their Applications, 93(1), 149–180. https://doi.org/10.1016/s0304-4149(00)00089-

2 

Mohamed Yaseen SK, Sravan Naga Parimala Kumar K, Prabakaran S and Suresh S. 

(2020) Ethyl methane sulphonate (Ems) induced mutations in M1 generation of cowpea 

(Vigna unguiculata (L.) Walp). Journal of Pharmacognosy and Phytochemistry, 9(2), pp. 

1545-1547. 

Muthuvel, J., Saharia, M., Kumar, S., Abiala, M. A., Rao, G. J. N., & Sahoo, L. (2020). Progress 

in Genetic Engineering of Cowpea for Insect Pest and Virus Resistance. In Springer 

eBooks (pp. 115–137). https://doi.org/10.1007/978-981-15-5897-9_7  

Odegbenro, F.J. and Ojoye, S. (2017). Assessment of Public Perception of Climate Change 

Issues in Minna, Niger State, Nigeria. Environmental Technology and Science Journal. 

8(1): 14-22 

https://www.europarl.europa.eu/cmsdata/237985/Antoniou.pdf
https://doi.org/10.21273/hortsci15036-20
https://doi.org/10.1109/CEC.2003.1299751
https://doi.org/10.18178/ijmlc.2017.7.1.611
https://doi.org/10.13023/etd.2016.475
https://doi.org/10.4314/equijost.v8i1.13
https://doi.org/10.1016/s0304-4149(00)00089-2
https://doi.org/10.1016/s0304-4149(00)00089-2
https://doi.org/10.1007/978-981-15-5897-9_7


 

 

JOURNAL OF DATA SCIENCE | Vol.2024:30 

eISSN:2805-5160  

http://ipublishing.intimal.edu.my/jods.htm 

 

Okewu, E., Adewole, P., & Sennaike, O. (2019). Experimental Comparison of Stochastic 

Optimizers in Deep Learning. In Lecture notes in computer science. pp. 704–

715. https://doi.org/10.1007/978-3-030-24308-1_55  

Okewu, E., Okewu, K., Maidin, S. S., & Shing, W. L. (2023). Genetic Mutation of Cowpea as 

a Constrained Stochastic Optimization Problem in Sustainability. JOURNAL OF DATA 

SCIENCE 2023 (13). pp. 1-16. http://eprints.intimal.edu.my/1816/1/jods2023_13.pdf 

Okewu, K., Okewu, E., Shing, W. L., & Maidin, S. S. (2023). Genetic Algorithm for 

Forecasting Bioinformatic Outcomes of Mutation-induced Cowpeas for Sustainable 

Development. JOURNAL OF DATA SCIENCE  2023(12). pp 1-

13.  http://eprints.intimal.edu.my/1062/1/jods2023_12.pdf  

Sandler R. (2020). The ethics of genetic engineering and gene drives in 

conservation. Conservation biology: the journal of the Society for Conservation 

Biology, 34(2), 378–385. https://doi.org/10.1111/cobi.13407  

Savitri, E. S., & Fauziah, S. M. (2020). ROLE OF ISSR MOLECULAR MARKER IN 

ANALYSIS OF GENETIC DIVERSITY OF MUTANT Glycine soja THROUGH 

MUTATION INDUCTION WITH COMBINATION OF GAMMA RAY 

IRRADIATION AND EMS (ETHYL METHANE SULFONATE). Journal of Applied 

Biological Sciences, 14(1), 113–123.  

 

Soviadan, Mawussi. (2019). CONSTRAINED AND UNCONSTRAINED OPTIMIZATION. 

https://doi.org/10.13140/RG.2.2.30215.96163/2  

Udhaya Kumar D, Paramaguru P, Swaminathan V, Manikanda Boopathi N, Juliet Hepziba S, 

Arumugam T and Susmitha D (2019). Effect of gamma irradiation and ethyl methane 

sulphonate in annual moringa (Moringa oleifera L.) variety PKM-1. Journal of 

Pharmacognosy Phytochemistry 8(5), pp. 2258-2261 

Yali, W. (2022). Genetic engineering its application, importance and future aspects in modern 

Crop improvement. African Journal of Food Science and Technology pp. 01–

06. https://doi.org/10.14303//ajfst.2022.034  

 

 

 

 

 

 

 

 

 

https://doi.org/10.1007/978-3-030-24308-1_55
http://eprints.intimal.edu.my/1816/1/jods2023_13.pdf
http://eprints.intimal.edu.my/1062/1/jods2023_12.pdf
https://doi.org/10.1111/cobi.13407
https://doi.org/10.13140/RG.2.2.30215.96163/2
https://doi.org/10.14303/ajfst.2022.034

