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Abstract 

 

Crowd counting is a critical task in public safety, event management, and urban planning. This 

paper presents a real-time crowd counting system leveraging machine learning to accurately 

estimate the number of people in a given scene. The proposed system employs a convolutional 

neural network (CNN)-based deep learning model, optimized for processing images and video 

streams to identify and count individuals in diverse environments. Key features of the system 

include real-time inference, robust performance in varying lighting and density conditions, and 

adaptability to different camera perspectives. The model is trained on a diverse dataset, 

encompassing crowded events, open spaces, and public gatherings, ensuring its versatility and 

reliability. Post-training, the system is deployed using lightweight architectures, allowing seamless 

integration with edge devices and IoT platforms. 
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Introduction 

 

Concerts, festivals, sports games, and other entertainment events often bring about crowding. 

Researchers in the field of computer vision find crowd behavior analysis to be particularly 

interesting and active. Depending on the situation, crowds are groups of individuals often found 

in a certain area. The people in a temple will tend to be different than the people in a shopping 

area. A crowd is made up of people who happen to be in the same place at the same time. The 

growing human population is often associated with more crowded places. Therefore, to check on 

these occasions, it is important to have many CCTV cameras in place to supervise the crowd.  

  

 Since the human eye cannot cover all the cameras at once, using only patrol guard is 

impractical. For this reason, technology should be developed for constant monitoring of crowds 

over a long time. Some of the issues in detecting events automatically are having several events 
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occur at once, dealing with much data at once, obstructions, and detecting events instantly. To 

keep the public safe, public authorities must watch surveillance recordings to identify dangerous 

crowds and their actions. Algorithms used for viewing crowds using computers usually belong to 

one of three main areas: people counting, people tracking, and studying crowd behavior. For 

people counting, we estimate the number of visitors to ensure the facility is not too crowded.  

 

 People counting allows for the estimation of people in a particular location to avoid 

overcrowding. People tracking involves following the movements of people in a crowd so that 

useful information about their state and risks can be collected. By examining the crowd’s behavior, 

the system analyses the unexpected dangers that might arise and the crowd circulation. Most IoT 

systems have three different layers. Sensors are part of the first layer, which obtains data from the 

real-world environment. Its role is to find and record information related to the surroundings and 

the crowd.  

 

 At the following layer, called the network layer, information is sent through various 

networks over wired or wireless channels. Thanks to the Network Security layer, the information 

is sent fast and safely to the intended networks. The third component, known as the application 

layer, permits users to interact with different systems. This middle layer looks at the data, creates 

insights, and delivers useful details to those using the AI system.  

 

 Having computer vision and IoT technologies in crowd analysis systems provides a lot of 

good results. Law enforcement can use smart cities to respond rapidly to dangerous situations 

because smart traffic lights help them recognize and deal with them as soon as they arise. They 

also offer valuable insights that help arrange or plan events in public areas. The data gathered can 

allow for better infrastructure, organize events more efficiently, and ensure suitable crowd control.  

  

 For these reasons, the use of computer vision and IoT in managing crowds has made a 

significant improvement in ensuring the security of the public. Using them, we can ensure that 

public spaces are wiser, safer, and stronger.  

 
 

Materials and Methods 

 

Dataset Collection 

The system utilizes multiple datasets, including Shanghai Tech (Parts A and B), UCF_CC_50, the 

Mall dataset, and a custom dataset of real-world crowd scenes. These datasets cover a wide range 

of crowd densities and environments to ensure robust training. 

 

Model Architecture 

A lightweight CNN-based deep learning model, optimized for real-time crowd counting, is used. 

The MobileNetV2 architecture is selected for efficient feature extraction, allowing the model to 

process images quickly while maintaining accuracy. 

 

Optimization for Real-Time Performance 

To achieve real-time capabilities, optimizations such as model pruning, quantization, and 

knowledge distillation are employed. These methods reduce model size and computational load, 

enabling faster inference without sacrificing accuracy. 
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Training Procedure 

The model is trained using a combination of Mean Squared Error (MSE) for density estimation 

and count regression loss. The training process is carried out using the Adam optimizer with a 

learning rate scheduler, ensuring stable and fast convergence. 

 

Deployment and Evaluation 

The trained model is deployed on edge devices such as NVIDIA Jetson Nano and Raspberry Pi 4 

using TensorFlow Lite and ONNX formats. Performance is evaluated through metrics like Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE), FPS, and latency, under varying 

conditions of crowd density and camera perspectives. 

 

Architecture 

 

Figure 1. The system architecture 

 

The diagram in Figure 1 illustrates a real-time object detection and monitoring pipeline 

using computer vision and machine learning models. The process starts with a camera input, which 

continuously captures video frames. These frames undergo preprocessing to enhance image quality 

and prepare them for analysis. The preprocessed frames are then fed into an ML model, such as 

YOLO (You Only Look Once) or Faster R-CNN, which detects and classifies objects of interest 

within each frame. 

 

Next, a count detection module processes the model’s output to calculate the number of 

detected objects. Finally, the results are visualized and communicated through a dashboard or alert 

system, providing real-time monitoring and notifications based on the detected counts. This 

framework is useful for applications such as surveillance, crowd monitoring, or automated object 

counting in various environments. 

 

Abbreviations and Acronyms 

  

To ensure accurate and effective crowd analysis, a real-time counting system relies on 

various state-of-the-art tools and methods. At its core, CNN, a machine learning framework, helps 

computers accurately identify various images. CNNs are part of AI and are best used for counting 

and identifying individuals in crowded places. The design of these networks features several 

layers, allowing the system to identify features in images without experts having to manually 

design them. 
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 To achieve real-time performance, the system leverages high-performance computation 

capabilities. Graphics Processing Units (GPUs), known for their parallel processing power, are 

used to accelerate deep learning model inference, while Central Processing Units (CPUs) handle 

the general computation tasks required for processing. Together, they ensure the system can handle 

live video feeds and provide continuous crowd analysis without delays. 

When using items such as IoT sensors and mobile devices, model pruning and quantization are 

used to increase efficiency. When you prune a model, you make the neural network simpler by 

taking out neurons or connections that play a minor role. As a result of quantization, the model 

size decreases, and it works much faster when processing and requires less memory. 

  

 During the training of the model, MSE evaluates how different the predicted maps of crowd 

density are from the GT data. It is trained using various datasets that feature groups of people with 

different amounts of crowding, lighting conditions, and viewpoints. SGD is used within the system 

to improve the model’s parameters as the data is being trained. Non-linear features in the model 

are introduced using ReLU activation functions on its hidden layers. Adding BN to the network 

helps stabilize it and speeds up training by correcting the change in activations during training. 

  

 Real-time performance is critically assessed using Frames Per Second (FPS) as a key 

metric. The higher the FPS, the faster the system can process and output crowd estimates from 

video feeds, which is essential for applications in dynamic and fast-paced environments such as 

live events or emergency response situations. 

  

 For surveillance applications, the system can be integrated with Closed-Circuit Television 

(CCTV) cameras or Unmanned Aerial Vehicles (UAVs). CCTV cameras offer fixed-angle 

monitoring, often used for urban planning and public safety, while UAVs (drones) can provide 

aerial views of crowds, particularly in large outdoor gatherings or disaster zones. The combination 

of both allows for a flexible and comprehensive crowd monitoring system. 

 

 To enhance user interaction and provide actionable insights, the system can include a 

Graphical User Interface (GUI), making it easier for operators to visualize real-time crowd data, 

such as density maps and head counts. Additionally, the system may offer integration capabilities 

through an Application Programming Interface (API), allowing third-party applications to access 

the crowd counting data and incorporate it into broader systems, such as smart city frameworks, 

security monitoring, or disaster response platforms. 

  

 Moreover, the system's scalability and adaptability are enhanced by continuous feedback 

mechanisms that allow the model to learn and improve from deployment errors. As the system 

encounters new environments and crowd scenarios, it can adjust its performance to handle 

occlusions, varying scales, and different camera perspectives. These characteristics make the real-

time crowd counting system valuable in numerous applications, including smart cities, event 

management, public safety, and disaster management. 
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Result And Discussion  

 

The real-time crowd counting system was thoroughly tested on several well-known and 

challenging datasets, including Shanghai Tech and UCF_CC_50, to evaluate its accuracy, speed, 

and robustness in different environments. The results were impressive, demonstrating a low error 

rate even in highly congested scenes where the crowd density varied significantly. This showcased 

the system's ability to accurately estimate the number of people, even in the most crowded and 

complex settings, where traditional crowd counting methods often struggle. Furthermore, the 

system performed exceptionally well in both indoor and outdoor environments, proving its 

adaptability to different lighting conditions, camera angles, and crowd behavior. 

  

 In terms of performance, the system was able to run efficiently on edge devices like the 

NVIDIA Jetson Nano and Raspberry Pi, with a processing speed of around 15–25 frames per 

second (FPS). This demonstrates its capability to process live video feeds in real-time, which is 

crucial for dynamic environments like public events or surveillance operations. The ability to 

maintain a high FPS while counting people accurately ensures that the system can provide 

immediate feedback to operators, enabling timely decisions in crowd management or safety 

monitoring. The real-time processing capability also makes it ideal for integration into Internet of 

Things (IoT) platforms, where low-latency processing is essential. 

  

 To further enhance the system’s efficiency, model pruning and quantization techniques 

were applied. Pruning involves removing redundant or less significant weights and neurons from 

the model, reducing its complexity and improving its inference speed. Quantization, on the other 

hand, reduces the precision of the model’s parameters, which results in a smaller model size and 

faster execution, while maintaining a high level of accuracy. These optimizations were particularly 

beneficial when deploying the system on small IoT cameras or devices with limited computational 

resources. Thanks to these techniques, the system was able to achieve significantly smaller model 

sizes without compromising its performance. 

 

 The system also demonstrated resilience in handling several real-world challenges. For 

example, poor lighting conditions, which often cause visual noise in video feeds, did not 

significantly impact the system’s ability to detect and count individuals. Similarly, the system 

performed well in scenarios where people were closely packed together, with the challenge of 

occlusion—where one individual blocks the view of another—successfully addressed by the 

model's ability to predict crowd density rather than relying on strict individual identification. The 

ability to handle different camera angles, including top-down and side views, further showcased 

the system's versatility in varying perspectives, making it adaptable to a wide range of surveillance 

setups. 

 

 A unique feature of this system is its feedback mechanism, which allows it to continuously 

improve its performance over time. This feature enables the system to learn from its errors and 

adapt to new and unseen crowd dynamics. For example, if the system initially underestimates the 

crowd size in a specific scenario, the feedback loop allows it to update its model with corrections, 

improving its future predictions in similar environments. This ongoing learning process not only 

boosts accuracy but also enhances the system's robustness in unpredictable real-world situations. 
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Conclusion 

 

A real-time crowd counting system based on a Convolutional Neural Network (CNN)-driven 

machine learning model, designed to accurately estimate the number of individuals in diverse 

environments. The system is equipped to handle challenges such as varying lighting conditions, 

different camera angles, and high-density crowds, providing robust performance even under 

complex real-world scenarios. Key optimization techniques, including model pruning and 

quantization, ensure both high accuracy and fast processing speeds, making the system suitable 

for deployment on edge devices like the NVIDIA Jetson Nano and Raspberry Pi. 

 

 The system also incorporates a feedback learning mechanism, allowing it to continuously 

improve its performance over time by learning from past predictions and adapting to new 

environments. This feature ensures that the system becomes more accurate and reliable as it 

encounters various crowd behaviours and environmental conditions. Real-time processing 

capabilities are achieved with minimal latency, making the system ideal for IoT platforms and 

real-time applications. 

 

 By demonstrating its effectiveness on well-known datasets like Shanghai Tech and 

UCF_CC_50, the system proves its accuracy in crowded scenes and diverse settings. Its ability to 

operate efficiently on resource-constrained devices positions it as an effective tool for real-time 

crowd monitoring in smart cities, event management, public safety, and disaster response 

applications.  
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